Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 13 | 1 |
Tytuł artykułu

Results for Mild solution of fractional coupled hybrid boundary value problems

Treść / Zawartość
Warianty tytułu
Języki publikacji
The study of coupled system of hybrid fractional differential equations (HFDEs) needs the attention of scientists for the exploration of its different important aspects. Our aim in this paper is to study the existence and uniqueness of mild solution (EUMS) of a coupled system of HFDEs. The novelty of this work is the study of a coupled system of fractional order hybrid boundary value problems (HBVP) with n initial and boundary hybrid conditions. For this purpose, we are utilizing some classical results, Leray–Schauder Alternative (LSA) and Banach Contraction Principle (BCP). Some examples are given for the illustration of applications of our results.
Opis fizyczny
  • Department of Mathematics Computer Science, Cankaya University, 06530 Ankara, Turkey and Institute of Space
    Sciences, P.O. BOX, MG-23, 76900 Magurele-Bucharest, Romania
  • Department of Mathematical Sciences, University of South Africa, PO Box 392, UNISA
    0003, South Africa
  • Department of Mathematics, University of Mazandaran, Babolsar, Iran
  • University of Malaknd, Chakdara, Dir lower, P. O. Box 18000, Khybar Pakhtunkhwa, Pakistan and Shaheed Benazir
    Bhutto University, Sheringal, Dir Upper, P.O. Box 18000, Khybar Pakhtunkhwa, Pakistan
  • Department of Mathematical Sciences, University of South Africa, PO Box 392, UNISA
    0003, South Africa
  • ---
  • [1] Ahmad B., Ntouyas S.K., Alsaedi A.: Existence results for a system of coupled hybrid fractional differential equations, Sci. World. J., 2014, Article ID 426438, 6 pages [WoS]
  • [2] Anastassiou G.A.: On right fractional calculus, Chaos, Solitons and Fractals, 2009, 42(1), 365-376 [WoS][Crossref]
  • [3] Atangana A.: Convergence and stability analysis of a novel iteration method for fractional Biological population equation, Neural Comput. Appl., 2014, 25(5), 1021-1030 [WoS][Crossref]
  • [4] Chai G., Hu S.: Existence of positive solutions for a fractional high-order three-point boundary value problem, Adv. Differ. Equ.-NY, 2014, 90 [Crossref]
  • [5] Herzallah M.A.E., Baleanu D.: On Fractional order hybrid differential equations, Abstr. Appl. Anal., 2014, Article ID 389386, 7 pages
  • [6] Hilfer (Ed.), R.: Application of fractional calculus in physics, W. Sci. Publishing Co. Singapore, 2000
  • [7] Houas M., Dahmani Z.: New results for a coupled system of fractional differential equations, Facta Universitatis, Ser. Math. Inform., 2013, Vol. 28(2), 133-150
  • [8] Khan H., Alipour M., Khan R.A., Tajadodi H., Khan A.: On approximate solution of fractional order Logistic equations by operational matrices of Bernstein polynomials, J. Math. Comp. Sci., 2014, 14 (2015), 222-232
  • [9] Khan R.A., Khan A., Samad A., Khan H.: On existence of solutions for fractional differential equations with P-Laplacian operator, J. Fract. Calc. Appl., 2014, Vol. 5(2) July, pp. 28-37
  • [10] Kilbas A.A., Srivastava H.M., Trujillo J.J.: Theory and applications of fractional differential equations, 24, North-Holland Mathematics Studies, Amsterdam, 2006
  • [11] Yang Y.J., Baleanu D., Yang X.J.: A Local fractional variational iteration method for Laplace equation with in local fractional operators, Abstr. Appl. Anal., 2013, Article ID 202650, 6 pages
  • [12] Zhao C.G., Yang A.M., Jafari H., Haghbin A.: The Yang-Laplace transform for solving the IVPs with local fractional derivative, Abstr. Appl. Anal., 2014, Article ID 386459, 5 pages
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.