PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 13 | 1 |
Tytuł artykułu

Results for Mild solution of fractional coupled hybrid boundary value problems

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study of coupled system of hybrid fractional differential equations (HFDEs) needs the attention of scientists for the exploration of its different important aspects. Our aim in this paper is to study the existence and uniqueness of mild solution (EUMS) of a coupled system of HFDEs. The novelty of this work is the study of a coupled system of fractional order hybrid boundary value problems (HBVP) with n initial and boundary hybrid conditions. For this purpose, we are utilizing some classical results, Leray–Schauder Alternative (LSA) and Banach Contraction Principle (BCP). Some examples are given for the illustration of applications of our results.
Wydawca
Czasopismo
Rocznik
Tom
13
Numer
1
Opis fizyczny
Daty
otrzymano
2015-03-23
zaakceptowano
2015-05-15
online
2015-09-25
Twórcy
  • Department of Mathematics Computer Science, Cankaya University, 06530 Ankara, Turkey and Institute of Space
    Sciences, P.O. BOX, MG-23, 76900 Magurele-Bucharest, Romania
  • Department of Mathematical Sciences, University of South Africa, PO Box 392, UNISA
    0003, South Africa
  • Department of Mathematics, University of Mazandaran, Babolsar, Iran
autor
  • University of Malaknd, Chakdara, Dir lower, P. O. Box 18000, Khybar Pakhtunkhwa, Pakistan and Shaheed Benazir
    Bhutto University, Sheringal, Dir Upper, P.O. Box 18000, Khybar Pakhtunkhwa, Pakistan
  • Department of Mathematical Sciences, University of South Africa, PO Box 392, UNISA
    0003, South Africa
Bibliografia
  • ---
  • [1] Ahmad B., Ntouyas S.K., Alsaedi A.: Existence results for a system of coupled hybrid fractional differential equations,Sci. World. J., 2014, Article ID 426438, 6 pages[WoS]
  • [2] Anastassiou G.A.: On right fractional calculus, Chaos, Solitons and Fractals, 2009, 42(1), 365-376[WoS][Crossref]
  • [3] Atangana A.: Convergence and stability analysis of a novel iteration method for fractional Biological population equation,Neural Comput. Appl., 2014, 25(5), 1021-1030[WoS][Crossref]
  • [4] Chai G., Hu S.: Existence of positive solutions for a fractional high-order three-point boundary value problem, Adv. Differ. Equ.-NY,2014, 90[Crossref]
  • [5] Herzallah M.A.E., Baleanu D.: On Fractional order hybrid differential equations, Abstr. Appl. Anal., 2014, Article ID 389386,7 pages
  • [6] Hilfer (Ed.), R.: Application of fractional calculus in physics, W. Sci. Publishing Co. Singapore, 2000
  • [7] Houas M., Dahmani Z.: New results for a coupled system of fractional differential equations, Facta Universitatis, Ser. Math.Inform., 2013, Vol. 28(2), 133-150
  • [8] Khan H., Alipour M., Khan R.A., Tajadodi H., Khan A.: On approximate solution of fractional order Logistic equations byoperational matrices of Bernstein polynomials, J. Math. Comp. Sci., 2014, 14 (2015), 222-232
  • [9] Khan R.A., Khan A., Samad A., Khan H.: On existence of solutions for fractional differential equations with P-Laplacian operator,J. Fract. Calc. Appl., 2014, Vol. 5(2) July, pp. 28-37
  • [10] Kilbas A.A., Srivastava H.M., Trujillo J.J.: Theory and applications of fractional differential equations, 24, North-HollandMathematics Studies, Amsterdam, 2006
  • [11] Yang Y.J., Baleanu D., Yang X.J.: A Local fractional variational iteration method for Laplace equation with in local fractionaloperators, Abstr. Appl. Anal., 2013, Article ID 202650, 6 pages
  • [12] Zhao C.G., Yang A.M., Jafari H., Haghbin A.: The Yang-Laplace transform for solving the IVPs with local fractional derivative,Abstr. Appl. Anal., 2014, Article ID 386459, 5 pages
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_math-2015-0055
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.