PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 13 | 1 |
Tytuł artykułu

Some fractional integral formulas for the Mittag-Leffler type function with four parameters

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we present some results from the theory of fractional integration operators (of Marichev- Saigo-Maeda type) involving the Mittag-Leffler type function with four parameters ζ , γ, Eμ, ν[z] which has been recently introduced by Garg et al. Some interesting special cases are given to fractional integration operators involving some Special functions.
Wydawca
Czasopismo
Rocznik
Tom
13
Numer
1
Opis fizyczny
Daty
otrzymano
2015-06-16
zaakceptowano
2015-08-16
online
2015-09-25
Twórcy
  • Departamento de Análise Matemática, Facultade de Matemáicas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain and Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21589, Jeddah, Saudi Arabia, juanjose.nieto.roig@usc.es
Bibliografia
  • [1] Agarwal P, Trujillo J J, Rogosin S V, Certain fractional integral operators and the generalized multiindex Mittag-Leffler functions, Proc. Indian Acad. Sci. Math. Sci. (In press)
  • [2] Agarwal P, Chnad M and Jain S, Certain integrals involving generalized Mittag-Leffler functions, Proc. Nat. Acad. Sci. India Sect. A, (2015); doi:10.1007/s40010-015-0209-1[Crossref]
  • [3] Agarwal P, Jain S, Chnad M, Dwivedi S K, Kumar S, Bessel functions Associated with Saigo-Maeda fractional derivative operators, J. Fract. Calc. 5(2) (2014) 102-112
  • [4] Al-Bassam M A, Luchko Y F, On generalized fractional calculus and it application to the solution of integro-differential equations. J. Fract. Calc. 7 (1995) 69-88
  • [5] Baleanu D, Diethelm K, Scalas E, Trujillo J J, Fractional Calculus: Models and Numerical Methods (2012) (N. Jersey, London, Singapore: World Scientific Publishers)
  • [6] Capelas de Oliveira E, Mainardi F, VAZ J Jr, Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics, Eur. Phys. J. Special Topics 193 (2011) 161-171;http://dx.doi.org/10.1140/epjst/e2011-01388-0 [Crossref]
  • [7] Caponetto R, Dongola G, Fortuna L, and Petráš I, Fractional Order Systems: Modeling and Control Applications (2010) (Singapore: World Scientific Pub Co Inc)
  • [8] Caputo M, Mainardi F, Linear models of dissipation in anelastic solids. Riv. Nuovo Cimento (Ser. II). 1 (1971) 161-198
  • [9] Choi J, Agarwal P, A note on fractional integral operator associate with multiindex Mittag-Leffler functions, Filomat (In press)
  • [10] Choi J, Agarwal P, Certain integral transform and fractional integral formulas for the generalized Gauss hypergeometric functions, Abstr. Appl. Anal. 2014 (2014) 735946,7 pages;available online at http://dx.doi.org/10.1155/2014/735946 [Crossref]
  • [11] Diethelm K, The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type (2010) (Berlin: Springer) Springer Lecture Notes in Mathematics No 2004
  • [12] Dzrbashjan M M, On the integral transforms generated by the generalized Mittag-Leffler function, Izv. AN Arm. SSR 13(3) (1960) 21-63
  • [13] Garg M, A. Sharma and P. Manohar, A Generalized Mittag-Leffler Type Function with Four Parameters, Thai.J. Math., (In press)
  • [14] Gorenflo R., Kilbas A.A., Mainardi F., Rogosin S.V., Mittag-Leffler Functions, Related Topics and Applications (Springer 2014) 454 pages. http://www.springer.com/us/book/9783662439296
  • [15] Gorenflo R, Mainardi F, Fractional calculus: integral and differential equations of fractional order, in: A. Carpinteri and F. Mainardi (Editors) Fractals and Fractional Calculus in Continuum Mechanics 223-276 (1997) (Springer Verlag, Wien)
  • [16] Haubold H J, Mathai A M, and Saxena R K, Mittag-Leffler functions and their applications, J. Appl. Math. 2011 (2011) 298628, 51 pages;available online at http://dx.doi.org/10.1155/2011/298628 [Crossref]
  • [17] Hilfer R (Edt), Applications of Fractional Calculus in Physics (2000) (New Jersey, London, Hong Kong:Word Scientific Publishing Co.)
  • [18] Kilbas A A, Koroleva A A, Rogosin S V, Multi-parametric Mittag-Leffler functions and their extension, Fract. Calc. Appl. Anal. 16(2) (2013) 378-404
  • [19] Kilbas A A, Saigo M and Saxena R K, Solution of Volterra integro-differential equations with generalized Mittag-Leffler function in the kernels, J. Integral Equations Appl. 14(4) (2002) 377-386
  • [20] Kilbas A A, Srivastava H M, Trujillo J J, Theory and Applications of Fractional Differential Equations (2006)North-Holland Mathematics Studies. 204 (Elsevier, Amsterdam, etc)
  • [21] Kiryakova V,Generalized Fractional Calculus and Applications (1994) (Harlow, Longman)
  • [22] Kiryakova V, Multiindex Mittag-Leffler functions, related Gelfond-Leontiev operators and Laplace type integral transforms, Fract. Calc. Appl. Anal. 2(4) (1999) 445-462
  • [23] Kiryakova V, Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus, J. Comput. Appl. Math. 118 (2000) 241-259[Crossref]
  • [24] Kiryakova V, On two Saigo’s fractional integral operators in the class of univalent functions, Fract. Calc. Appl. Anal. 9(2) (2006) 160-176
  • [25] Kiryakova V S, The special functions of fractional calculus as generalized fractional calculus operators od some basic functions, Comp. Math. Appl. 59(3) (2010) 1128-1141
  • [26] Kiryakova V S, The multi-index Mittag-Leffler function as an important class of special functions of fractional calculus, Comp. Math. Appl. 59(5) (2010) 1885-1895
  • [27] Mainardi F, Fractional Calculus and Waves in Linear Viscoelasticity (2010) (London: Imperial College Press)
  • [28] Marichev O I, Volterra equation of Mellin convolution type with a Horn function in the kernel, Izv. AN BSSR Ser. Fiz.-Mat. Nauk No. 1 (1974) 128-129
  • [29] Mathai A M, Saxena R K, The H-function with Applications in Statistics and Other Disciplines, Halsted Press [John Wiley & Sons], New York, London, Sydney, 1978
  • [30] Mathai A M, Saxena R K, Haubold H J, The H-function. Theory and Applications (2010) (Dordrecht: Springer)
  • [31] McBride A C, Fractional Calculus and Integral Transforms of Gen- eralized Functions (1979) (Research Notes in Math. 31) (Pitman, London)
  • [32] Miller K S, Ross B, An Introduction to the Fractional Calculus and Fractional Differential Equations (1993) (New York: John Wiley and Sons)
  • [33] Mittag-Leffler G M, Sur la nouvelle fonction E .x/, C. R. Acad. Sci. Paris 137 (1903) 554-558
  • [34] NIST Handbook of Mathematical Functions. Edited by Frank W.J. Olver (editor-in-chief), D.W. Lozier, R.F. Boisvert, and C.W. Clark. Gaithersburg, Maryland, National Institute of Standards and Technology, and New York, Cambridge University Press, 951 + xv pages and a CD, (2010)
  • [35] Oldham K B, Spanier J, The Fractional Calculus (1974) (New York:Academic Press)
  • [36] Podlubny I, Fractional Differential Equations (1999) (New York: Academic Press)
  • [37] Prabhakar T R, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J. 19 (1971) 7-15
  • [38] Prakasa Rao B L S, Statistical inference for fractional diffusion processes (2010) (Chichester: John Wiley & Sons Ltd.)
  • [39] Rabotnov Yu N, Elements of Hereditary Solid Mechanics (1980) (Moscow:MIR)
  • [40] Rogosin S.V., "The Role of the Mittag-Leffler Function in Fractional Modeling" Mathematics 2015, 3, 368-381; doi:10.3390/math3020368[Crossref]
  • [41] Saigo M, On generalized fractional calculus operators. In: Recent Advances in Applied Mathematics (Proc. Internat. Workshop held at Kuwait Univ.). Kuwait Univ., Kuwait, (1996) 441-450
  • [42] Saigo M, Maeda N, More generalization of fractional calculus, In: Transform Methods and Special Functions, Varna 1996 (Proc. 2nd Intern. Workshop, P. Rusev, I. Dimovski, V. Kiryakova Eds.), IMI-BAS, Sofia, (1998) 386-400
  • [43] Samko S G, Kilbas A A, Marichev O I, Fractional Integrals and Derivatives: Theory and Applications (1993) (New York and London: Gordon and Breach Science Publishers)
  • [44] Saxena R K and Nishimoto K, N-Fractional Calculus of Generalized Mittag- Leffler functions, J. Fract. Calc. 37(2010) 43-52
  • [45] Saxena R K, Saigo M, Generalized fractional calculus of the H-function associated with the Appell function, J. Fract. Calc. 19 (2001) 89-104
  • [46] Shukla A K and Prajapati J C, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl. 336 (2007) 797-811
  • [47] Srivastava H M and Agarwal P, Certain fractional integral operators and the generalized incomplete hypergeometric functions, Appl. Appl. Math. 8(2) (2013) 333-345
  • [48] Srivastava H M, Choi J, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001
  • [49] Srivastava H M, Choi J, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012
  • [50] Srivastava H M, Gupta K C, Goyal S P, The H-functions of One and Two Variables with Applications, South Asian Publishers, New Delhi, Madras, 1982
  • [51] Srivastava H M and Saigo M, Multiplication of fractional calculus operators and boundary value problems involving the eulerdarboux equation, J. Math. Anal. Appl. 121 (1987) 325-369[Crossref]
  • [52] Srivastava H M, Tomovski LZ, Fractional claculus with an integral operator containing generalized Mittag-Leffler function in the kernel, Appl. Math. Comput. 211(1) (2009) 198-210[Crossref]
  • [53] Tarasov V E, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media (2010) (Beijing: Springer, Heidelberg; Higher Education Press)
  • [54] Tenreiro Machado J A, Kiryakova V, Mainardi F, A poster about the old history of fractional calculus, Fract. Calc. Appl. Anal. 13 (4)(2010) 447-454
  • [55] Tenreiro Machado J A, Kiryakova V, Mainardi F, A poster about the recent history of fractional calculus, Fract. Calc. Appl. Anal. 13(3)(2010) 329-334
  • [56] Tenreiro Machado J A, Kiryakova V, Mainardi F, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simulat. 16(3) (2011) 1140-1153; available online at http://dx.doi.org/10.1016/j.cnsns.2010.05.027 [Crossref]
  • [57] Uchaikin V V, Fractional derivatives for physicists and engineers. Vol. I. Background and theory(2013) (Beijing: Springer, Berlin - Higher Education Press)
  • [58] Uchaikin V V, Fractional derivatives for physicists and engineers, Vol. II Applications(2013) (Beijing: Springer, Berlin - Higher Education Press)
  • [59] Wiman A, Über den Fundamentalsatz in der Theorie der Funktionen E .x/, Acta Math. 29(1905) 191-201
  • [60] Zaslavsky G M, Hamiltonian Chaos and Fractional Dynamics (2005) (Oxford: Oxford University Press)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_math-2015-0051
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.