PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 13 | 1 |
Tytuł artykułu

Exact solutions of supersymmetric Burgers equation with Bosonization procedure

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using bosonization approach, the N=1 supersymmetric Burgers (SB) system is changed to a system of coupled bosonic equations. The difficulties caused by intractable anticommuting fermionic fields can be effectively avoided with the approach. By solving the coupled bosonic equations, the traveling wave solutions of the SB system can be obtained with the mapping and deformation method. Besides, the richness of the localized excitations of the supersymmetric integrable system is discovered. In the meanwhile, the similarity reduction solutions of the SB system are also studied with the Lie point symmetries theory.
Wydawca
Czasopismo
Rocznik
Tom
13
Numer
1
Opis fizyczny
Daty
otrzymano
2014-10-01
zaakceptowano
2015-07-01
online
2015-08-27
Twórcy
autor
  • Institute of Nonlinear Science, Shaoxing University, Shaoxing 312000, China
autor
  • Department of Physics, Shanghai Jiao Tong University, Shanghai 200040, China
autor
  • Institute of Nonlinear Science, Shaoxing University, Shaoxing 312000, China
autor
  • College of Electron and Information Engineering, University of Electronic Science and Technology of China Zhongshan
    Institute, Zhongshan 528402, China
Bibliografia
  • [1] Wess J., Bagger J., Supersymmetry and Supergravity, Princeton University Press, 1992
  • [2] Witten E., Constraints on supersymmetry breaking, Nucl. Phys. B, 1982, 202, 253-316
  • [3] Kupershmidt B.A., A super Korteweg-de Vries equation: An integrable system, Phys. Lett. A, 1984, 102, 213-215
  • [4] Mathieu P., Supersymmetric extension of the Korteweg-de Vries equation, J. Math. Phys., 1988, 28, 2499-2506; Mathieu P.,The Painlevé property for fermionic extensions of the Korteweg-de Vries equation, Phys. Lett. A, 1988, 128, 169-171
  • [5] Kupershmidt B.A., Super long waves, Mech. Res. Commun., 1986, 13, 47-51
  • [6] Hlavatý L., The Painlevé analysis of fermionic extensions of KdV and Burgers equations, Phys. Lett. A, 1989, 137, 173-178
  • [7] Martin Y.I., Radul A.O., A supersymmetric extension of the Kadomtsev-Petvashvili hierarchy, Commun. Math. Phys., 1985, 98,65-77
  • [8] Chaichan M., Kulish P.P., On the method of inverse scattering problem and Bäcklund transformations for supersymmetricequations, Phys. Lett. B, 1978, 78, 413-416
  • [9] Liu Q.P., Popowicz Z., Tian K., Supersymmetric reciprocal transformation and its applications, J. Math. Phys., 2010, 51,093511-1-24[WoS]
  • [10] Mathieu P., Open problems for the superKdV equations, arXiv:0005007 [math-ph]
  • [11] Plyushchay M.S., Deformed Heisenberg algebra, fractional spin fields, and supersymmetry without fermions, Ann. Phys., 1996,245, 339-360; Efetov K.B., Pépin C., Meier H., Exact bosonization for an interacting Fermi gas in arbitrary diemsions, Phys. Rev.Lett., 2009, 103, 186403-1-4.
  • [12] Andrea S., Restuccia A., Sotomayor A., An operator valued extension of the super Korteweg-de Vries equations, J. Math. Phys.,2001, 42, 2625-2634
  • [13] Gao X.N., Lou S.Y., Bosonization of supersymmetric KdV equation, Phys. Lett. B, 2012, 707, 209-215
  • [14] Ren B., Lin J., Yu J., Supersymmetric Ito equation: Bosonization and exact solutions, AIP Advances, 2013, 3, 042129-1-12
  • [15] Olver P.J., Application of Lie Group to Differential Equation, Springer, Berlin, 1986; Bluman G.W., Anco S.C., Symmetry andIntegration Methods for Differential Equations, Springer, New York, 2002
  • [16] Bluman G., Cole J., General similarity solution of the heat equation, J. Math. Mech., 1969, 18, 1025-1042
  • [17] Clarkson P.A., Kruskal M., New similarity reductions of the Boussinesq equation, J. Math. Phys., 1989, 30, 2201-2213
  • [18] Lou S.Y., Ma H.C., Non-Lie symmetry groups of (2+1)-dimensional nonlinear systems obtained from a simple direct method,J. Phys. A: Math. Gen., 2005, 38, L129-L137
  • [19] Ren B., Xu X.J., Lin J., Symmetry group and exact solutions for the (2+1)-dimensional Ablowitz-Kaup-Newell-Segur equation,J. Math. Phys., 2009, 50, 123505-1-9
  • [20] Li B., Wang C., Chen Y., Symmetry, full symmetry groups, and some exact solutions to a generalized Davey-Stewartson system,J. Math. Phys., 2008, 49, 103503-1-13[WoS]
  • [21] Burgers J.M., Mathematical Examples Illustrating Relations Occurring in the Theory of Turbulent Fluid Motion, Verh. Nederl. Akad.Wetensh. Afd. Wetensch. Afd. Natuurk. Sect. 1., 1939, 17, 1-53.
  • [22] Biler P., Funaki T., Woyczynski W.A., Fractal Burgers equations, J. Differ. Equations, 1998, 148, 9-46
  • [23] Sugimoto N., Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves, J. Fluid Mech., 1991,225, 631-653
  • [24] Miškinis P., Some properties of fractional Burgers equation, Math. Model. Anal., 2002, 7, 151-158
  • [25] Yang X.J., Machado J.A.T., Hristov J., Nonlinear dynamics for local fractional Burgers’ equation arising in fractal flow, NonlinearDyn., 2015, 1-5
  • [26] Carstea A.S., Ramani A., Grammaticos B., Linearisable supersymmetric equations, Chaos, Solitons and Fractals, 2002, 14,155-158
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_math-2015-0047
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.