It is proved that the space of solutions of the Dirichlet problem for the harmonic functions in the unit disk with nontangential boundary limits 0 a.e. has the infinite dimension.
Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, 74 Roze Luxemburg Str., 83114, Donetsk, Ukraine
Bibliografia
[1] Dovgoshey O., Martio O., Ryazanov V., Vuorinen M. The Cantor function, Expo. Math., 2006, 24, 1-37
[2] Efimushkin A., Ryazanov V. On the Riemann-Hilbert problem for the Beltrami equations, Contemporary Mathematics (to appear), see also preprint http://arxiv.org/abs/1402.1111v3 [math.CV] 30 July 2014, 1-25
[4] Gehring F.W., On the Dirichlet problem, Michigan Math. J., 1955-1956, 3, 201
[5] Goluzin G.M., Geometric theory of functions of a complex variable, Transl. of Math. Monographs, 26, American Mathematical Society, Providence, R.I., 1969
[6] Koosis P., Introduction to Hp spaces, 2nd ed., Cambridge Tracts in Mathematics, 115, Cambridge Univ. Press, Cambridge, 1998
[7] Ryazanov V., On the Riemann-Hilbert Problem without Index, Ann. Univ. Bucharest, Ser. Math. 2014, 5, 169-178