PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 13 | 1 |
Tytuł artykułu

An extended Prony’s interpolation scheme on an equispaced grid

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An interpolation scheme on an equispaced grid based on the concept of the minimal order of the linear recurrent sequence is proposed in this paper. This interpolation scheme is exact when the number of nodes corresponds to the order of the linear recurrent function. It is shown that it is still possible to construct a nearest mimicking algebraic interpolant if the order of the linear recurrent function does not exist. The proposed interpolation technique can be considered as the extension of the Prony method and can be useful for describing noisy and defected signals.
Wydawca
Czasopismo
Rocznik
Tom
13
Numer
1
Opis fizyczny
Daty
otrzymano
2014-05-29
zaakceptowano
2015-04-09
online
2015-05-21
Twórcy
  • Department of Applied Mathematics, Kaunas University of Technology, Studentu 50-325,
    LT-51368, Kaunas, Lithuania
  • Department of Applied Mathematics, Kaunas University of Technology, Studentu 50-325,
    LT-51368, Kaunas, Lithuania
  • Department of Mathematical Modelling, Vilnius Gediminas Technical University, Sauletekio 11, LT-10223, Vilnius,
    Lithuania
  • Research Group for Mathematical and Numerical Analysis of Dynamical Systems, Kaunas University of
    Technology, Studentu 50-147, LT-51368, Kaunas, Lithuania
Bibliografia
  • [1] Badeau R., David B., High-resolution spectral analysis of mixtures of complex exponentials modulated by polynomials, IEEETrans. Signal Process., 2006, 54, 1341–1350.[Crossref]
  • [2] Badeau R., Richard G., David B., Performance of ESPRIT for estimating mixtures of complex exponentials modulated bypolynomials, IEEE Trans. Signal Process., 2008, 56, 492–504.[WoS][Crossref]
  • [3] Ehlich H., Zeller K., Auswertung der Normen von Interpolationsoperatoren, Math. Ann., 1996, 164, 105–112.[Crossref]
  • [4] Higham N.J., The numerical stability of barycentric Lagrange interpolation, IMA J. Numer. Anal., 2004, 24, 547–556.[Crossref]
  • [5] Navickas Z., Bikulciene L., Expressions of solutions of ordinary differential equations by standard functions, MathematicalModeling and Analysis, 2006, 11, 399–412.
  • [6] Peter T., Plonaka G., A generalized Prony method for reconstruction of sparse sums of eigenfunctions of linear operators, InverseProblems, 2013, 29, 025001.[Crossref][WoS]
  • [7] Platte R.B., Trefethen L.N., Kuijlaars A.B.J., Impossibility of fast stable approximation of analytic functions from equispacedsamples, SIAM Review, 2011, 53, 308–314.[WoS][Crossref]
  • [8] Ragulskis M., Lukoseviciute K., Navickas Z., Palivonaite R., Short-term time series forecasting based on the identification ofskeleton algebraic sequences, Neurocomputing, 2011, 64, 1735–1747.[WoS][Crossref]
  • [9] Runge C., Uber empirische Funktionen and die Interpolation zwischen aquidistanten Ordinaten, Z. Math. Phys., 1901, 46 224–243.
  • [10] Salzer H.E., Lagrangian interpolation at the Chebyshev points xn;υ = cos(υπ/n), υ = 0(1)n; some unnoted advantages,Computer J., 1972, 15, 156–159.
  • [11] Schonhage A., Fehlerfortpflanzung bei Interpolation, Numer. Math., 1961, 3, 62–71.[Crossref]
  • [12] Trefethen L.N., Pachon R., Platte R.B., Driscoll T.A., Chebfun Version 2, http://www.comlab.ox.ac.uk/chebfun/, Oxford University,2008.
  • [13] Turetskii A.H., The bounding of polynomials prescribed at equally distributed points, Proc. Pedag. Inst. CityplaceVitebsk, 1940, 3,117–127.
  • [14] Osborne M.R., Smyth G.K., A Modified Prony Algorithm For Exponential Function Fitting, SIAM Journal of Scientific Computing,1995, 16, 119–138.
  • [15] Martin C., Miller J., Pearce K., Numerical solution of positive sum exponential equations, Applied Mathematics and Computation,1989, 34, 89–93.
  • [16] Fuite J., Marsh R.E., Tuszynski J.A., An application of Prony’s sum of exponentials method to pharmacokinetic data analysis,Commun. Comput. Phys., 2007, 2, 87–98.
  • [17] Giesbrecht M., Labahn G., Wen-shin Lee, Symbolic-numeric sparse interpolation of multivariate polynomials, Journal of SymbolicComputation, 2009, 44, 943–959.
  • [18] Steedly W., Ying C.J., Moses O.L., A modified TLS-Prony method using data decimation, IEEE Transactions on Signal Processing,1992, 42, 2292–2303.[Crossref]
  • [19] Kurakin V.L., Kuzmin A.S., Mikhalev A.V., Nechavev A.A., Linear recurring sequneces over rings and modules, Journal ofMathematical Sciences, 1995, 76, 2793–2915.
  • [20] Kurakin V., Linear complexity of polinear sequences, Disctrete Math. Appl., 2001, 11, 1–51.[Crossref]
  • [21] Potts D., Tasche M., Parameter estimation for multivariate exponential sums, Electron. Trans. Numer. Anal., 2013, 40, 204–224.
  • [22] Kaltofen E., Villard G., On the complexity of computing determinants, Computers Mathematics Proc. Fifth Asian Symposium(ASCM 2001), Lecture Notes Series on Computing, 2001, 9, 13–27.
  • [23] Kaw A., Egwu K., Numerical Methods with Applications, Textbooks collection Book 11, 2010, ch. 5.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_math-2015-0031
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.