PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 13 | 1 |
Tytuł artykułu

Properties of k-beta function with several variables

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we discuss some properties of beta function of several variables which are the extension of beta function of two variables. We define k-beta function of several variables and derive some properties of this function which are the extension of k-beta function of two variables, recently defined by Diaz and Pariguan [4]. Also, we extend the formula Γk(2z) proved by Kokologiannaki [5] via properties of k-beta function.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
13
Numer
1
Opis fizyczny
Daty
otrzymano
2014-05-26
zaakceptowano
2015-02-03
online
2015-05-08
Twórcy
autor
  • Department of Mathematics, University of Sargodha, Sargodha, Pakistan
  • Department of Mathematics, University of Sargodha, Sargodha, Pakistan
autor
  • Department of Mathematics, G.C.University, Faisalabad, Pakistan
autor
  • Department of Mathematics, G.C.University, Faisalabad, Pakistan
Bibliografia
  • [1] Anderson G.D., Vamanmurthy M.K., Vuorinen M.K., Conformal Invarients, Inequalities and Quasiconformal Maps, Wiley, NewYork, 1997
  • [2] Andrews G.E., Askey R., Roy R., Special Functions Encyclopedia of Mathemaics and its Application 71, Cambridge UniversityPress, 1999
  • [3] Carlson B.C., Special Functions of Applied Mathemaics, Academic Press, New York, 1977
  • [4] Diaz R., Pariguan E., On hypergeometric functions and k-Pochhammer symbol, Divulgaciones Mathematics, 2007, 15(2), 179-192
  • [5] Kokologiannaki C.G., Properties and inequalities of generalized k-gamma, beta and zeta functions, International Journal ofContemp, Math. Sciences, 2010, 5(14), 653-660
  • [6] Kokologiannaki C.G., Krasniqi V., Some properties of k-gamma function, LE MATHEMATICS, 2013, LXVIII, 13-22
  • [7] Krasniqi V., A limit for the k-gamma and k-beta function, Int. Math. Forum, 2010, 5(33), 1613-1617
  • [8] Mansoor M., Determining the k-generalized gamma function Γk(x), by functional equations, International Journal Contemp.Math. Sciences, 2009, 4(21), 1037-1042
  • [9] Mubeen S., Habibullah G.M., An integral representation of some k-hypergeometric functions, Int. Math. Forum, 2012, 7(4), 203-207
  • [10] Mubeen S., Habibullah G.M., k-Fractional integrals and applications, International Journal of Mathematics and Science, 2012,7(2), 89-94
  • [11] Mubeen S., Rehman A., Shaheen F., Properties of k-gamma, k-beta and k-psi functions, Bothalia Journal, 2014, 4, 371-379
  • [12] Rainville E.D., Special Functions, The Macmillan Company, New Yark(USA), 1960
  • [13] Rudin W., Real and Complex Analysis, 2nd edition McGraw-Hill, New York, 1974
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_math-2015-0030
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.