Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 24 | 1 | 69-79

Tytuł artykułu

Product Pre-Measure

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this article we formalize in Mizar [5] product pre-measure on product sets of measurable sets. Although there are some approaches to construct product measure [22], [6], [9], [21], [25], we start it from σ-measure because existence of σ-measure on any semialgebras has been proved in [15]. In this approach, we use some theorems for integrals.

Słowa kluczowe

Wydawca

Rocznik

Tom

24

Numer

1

Strony

69-79

Opis fizyczny

Daty

wydano
2016-03-01
otrzymano
2015-12-31
online
2016-08-19

Twórcy

autor
  • Gifu National College of Technology Gifu, Japan

Bibliografia

  • [1] Grzegorz Bancerek. Towards the construction of a model of Mizar concepts. Formalized Mathematics, 16(2):207-230, 2008. doi:10.2478/v10037-008-0027-x.
  • [2] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3): 537-541, 1990.
  • [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
  • [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
  • [5] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8 17.
  • [6] Heinz Bauer. Measure and Integration Theory. Walter de Gruyter Inc.
  • [7] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.
  • [8] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.
  • [9] Vladimir Igorevich Bogachev and Maria Aparecida Soares Ruas. Measure theory, volume 1. Springer, 2007.
  • [10] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
  • [11] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
  • [12] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
  • [13] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
  • [14] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
  • [15] Noboru Endou. Construction of measure from semialgebra of sets. Formalized Mathematics, 23(4):309-323, 2015. doi:10.1515/forma-2015-0025.
  • [16] Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, 14(2):53-70, 2006. doi:10.2478/v10037-006-0008-x.
  • [17] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. Formalized Mathematics, 9(3):495-500, 2001.
  • [18] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. The measurability of extended real valued functions. Formalized Mathematics, 9(3):525-529, 2001.
  • [19] Noboru Endou, Keiko Narita, and Yasunari Shidama. The Lebesgue monotone convergence theorem. Formalized Mathematics, 16(2):167-175, 2008. doi:10.2478/v10037-008-0023-1.
  • [20] Noboru Endou, Hiroyuki Okazaki, and Yasunari Shidama. Hopf extension theorem of measure. Formalized Mathematics, 17(2):157-162, 2009. doi:10.2478/v10037-009-0018-6.
  • [21] Gerald B. Folland. Real Analysis: Modern Techniques and Their Applications. Wiley, 2 edition, 1999.
  • [22] P. R. Halmos. Measure Theory. Springer-Verlag, 1974.
  • [23] Andrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
  • [24] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathematics, 3(1):17-21, 1992.
  • [25] M.M. Rao. Measure Theory and Integration. Marcel Dekker, 2nd edition, 2004.
  • [26] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990.
  • [27] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.
  • [28] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
  • [29] Hiroshi Yamazaki, Noboru Endou, Yasunari Shidama, and Hiroyuki Okazaki. Inferior limit, superior limit and convergence of sequences of extended real numbers. Formalized Mathematics, 15(4):231-236, 2007. doi:10.2478/v10037-007-0026-3.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_1515_forma-2016-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.