Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 23 | 4 | 351-369

Tytuł artykułu

Exponential Objects

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In the first part of this article we formalize the concepts of terminal and initial object, categorical product [4] and natural transformation within a free-object category [1]. In particular, we show that this definition of natural transformation is equivalent to the standard definition [13]. Then we introduce the exponential object using its universal property and we show the isomorphism between the exponential object of categories and the functor category [12].

Wydawca

Rocznik

Tom

23

Numer

4

Strony

351-369

Opis fizyczny

Daty

wydano
2015-12-01
otrzymano
2015-08-15
online
2016-03-25

Twórcy

  • Via del Pero 102, 54038 Montignoso, Italy

Bibliografia

  • [1] Jiri Adamek, Horst Herrlich, and George E. Strecker. Abstract and Concrete Categories: The Joy of Cats. Dover Publication, New York, 2009.
  • [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
  • [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
  • [4] Francis Borceaux. Handbook of Categorical Algebra I. Basic Category Theory, volume 50 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1994.
  • [5] Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1 (2):409–420, 1990.
  • [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.
  • [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
  • [8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
  • [9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
  • [10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
  • [11] Krzysztof Hryniewiecki. Graphs. Formalized Mathematics, 2(3):365–370, 1991.
  • [12] F. William Lawvere. Functorial semantics of algebraic theories and some algebraic problems in the context of functorial semantics of algebraic theories. Reprints in Theory and Applications of Categories, 5:1–121, 2004.
  • [13] Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts in Mathematics. Springer Verlag, New York, Heidelberg, Berlin, 1971.
  • [14] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
  • [15] Marco Riccardi. Object-free definition of categories. Formalized Mathematics, 21(3): 193–205, 2013. doi:10.2478/forma-2013-0021.[Crossref]
  • [16] Marco Riccardi. Categorical pullbacks. Formalized Mathematics, 23(1):1–14, 2015. doi:10.2478/forma-2015-0001.[Crossref]
  • [17] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
  • [18] Andrzej Trybulec. Isomorphisms of categories. Formalized Mathematics, 2(5):629–634, 1991.
  • [19] Andrzej Trybulec. Natural transformations. Discrete categories. Formalized Mathematics, 2(4):467–474, 1991.
  • [20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
  • [21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.
  • [22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Typ dokumentu

Bibliografia

Identyfikatory

bwmeta1.id-class.MML
CAT 8

Identyfikator YADDA

bwmeta1.element.doi-10_1515_forma-2015-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.