Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2015 | 3 | 1 |

Tytuł artykułu

Building bridges between Mathematics, Insurance and Finance

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Paul Embrechts is Professor of Mathematics at the ETH Zurich specializing in Actuarial Mathematics and Quantitative Risk Management. Previous academic positions include the Universities of Leuven, Limburg and London (Imperial College). Dr. Embrechts has held visiting professorships at several universities, including the Scuola Normale in Pisa (Cattedra Galileiana), the London School of Economics (Centennial Professor of Finance), the University of Vienna, Paris 1 (Panthéon-Sorbonne), theNationalUniversity of Singapore, KyotoUniversity,was Visiting Man Chair 2014 at the Oxford-Man Institute of Oxford University and has an Honorary Doctorate from the University of Waterloo, Heriot-Watt University, Edinburgh, and the Université Catholique de Louvain. He is an Elected Fellow of the Institute of Mathematical Statistics and the American Statistical Association, Honorary Fellow of the Institute and the Faculty of Actuaries, Actuary-SAA, Member Honoris Causa of the Belgian Institute of Actuaries and is on the editorial board of numerous scientific journals.He belongs to various national and international research and academic advisory committees. He co-authored the influential books Modelling of Extremal Events for Insurance and Finance, Springer, 1997 [8] andQuantitative RiskManagement: Concepts, Techniques and Tools, Princeton UP, 2005, 2015 [14] and published over 180 scientific papers. Dr. Embrechts consults on issues in Quantitative Risk Management for financial institutions, insurance companies and international regulatory authorities.

Słowa kluczowe

Wydawca

Czasopismo

Rocznik

Tom

3

Numer

1

Opis fizyczny

Daty

otrzymano
2015-04-09
zaakceptowano
2015-05-07
online
2015-05-21

Twórcy

  • Faculty of Economics & Management, Free University of Bozen/Bolzano, Italy
  • Department of Economics, Management and Quantitative Methods, University of Milan, Italy
  • Department of Mathematical Finance, Technische Universität München, Germany

Bibliografia

  • [1] Bedford, T. and R. Cooke (2001). Probabilistic Risk Analysis: Foundations and Methods. Cambridge University Press, Cambridge.
  • [2] Breiman, L. (1965). On some limit theorems similar to the arc-sin law. Theory Probab. Appl., 10(2), 323–331.
  • [3] De Vylder, F. (1982). Best upper bounds for integrals with respect to measures allowed to vary under conical and integral constraints. Insurance Math. Econom., 1(2), 109–130.
  • [4] Donnelly, C. and P. Embrechts (2010). The devil is in the tails: actuarial mathematics and the subprime mortgage crisis. Astin Bull., 40(1), 1–33. [WoS]
  • [5] Embrechts, P. (2006). Discussion of “Copulas: Tales and facts”, by Thomas Mikosch. Extremes, 9(1), 45–47.
  • [6] Embrechts, P. (2009). Copulas: a personal view. J. Risk Insurance, 76(4), 639–650. [WoS]
  • [7] Embrechts, P., C. M. Goldie, and N. Veraverbeke (1979). Subexponentiality and infinite divisibility. Z. Wahrsch. verw. Gebiete, 49(3), 335–347.
  • [8] Embrechts, P., C. Klüppelberg, and T. Mikosch (1997). Modelling Extremal Events for Insurance and Finance. Springer, Berlin.
  • [9] Embrechts, P., A. J. McNeil, and D. Straumann (2002). Correlation and dependence in risk management: properties and pitfalls. In Risk Management: Value at Risk and Beyond, pp. 176–223. Cambridge University Press, Cambridge.
  • [10] Feller, W. (1971). An Introduction to Probability Theory and its Applications. Vol. II. Second edition. John Wiley & Sons, New York, NY.
  • [11] Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman & Hall, London.
  • [12] Joe, H. (2014). Dependence Modeling with Copulas. CRC Press, Boca Raton, FL.
  • [13] Lindvall, T. (1977). A probabilistic proof of Blackwell’s renewal theorem. Ann. Probability, 5(3), 482–485.
  • [14] McNeil, A. J., R. Frey, and P. Embrechts (2015). Quantitative Risk Management: Concepts, Techniques and Tools - revised edition. Princeton University Press, Princeton, NJ.
  • [15] Mikosch, T. (2006). Copulas: Tales and facts. Extremes, 9(1), 3–20.
  • [16] Nelsen, R. B. (1999). An Introduction to Copulas. Springer-Verlag, New York, NY.
  • [17] Pitman, J. W. (1974). Uniform rates of convergence for Markov chain transition probabilities. Z. Wahrsch. verw. Gebiete, 29, 193–227.
  • [18] Prohorov, Y. V. (1956). Convergence of random processes and limit theorems in probability theory. Theory Probab. Appl., 1(2), 157–214.
  • [19] Rüschendorf, L. (2013). Mathematical Risk Analysis. Dependence, Risk Bounds, Optimal Allocations and Portfolios. Springer, Heidelberg.
  • [20] Salmon, F. (2009). Recipe for disaster: the formula that killed Wall Street. Wired Magazine, 17(3).
  • [21] Salmon, F. (2012). The formula that killed Wall Street. Significance, 9(1), 16–20.
  • [22] Skorohod, A. V. (1956). Limit theorems for stochastic processes. Theory Probab. Appl., 1(3), 261–290.
  • [23] Zhang, Y. (2014). Bounded gaps between primes. Ann. of Math., 179(3), 1121–1174.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_1515_demo-2015-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.