PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2016 | 3 | 1 | 77-84
Tytuł artykułu

Invertible and normal composition operators on the Hilbert Hardy space of a half–plane

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Operators on function spaces of form Cɸf = f ∘ ɸ, where ɸ is a fixed map are called composition operators with symbol ɸ. We study such operators acting on the Hilbert Hardy space over the right half-plane and characterize the situations when they are invertible, Fredholm, unitary, and Hermitian. We determine the normal composition operators with inner, respectively with Möbius symbol. In select cases, we calculate their spectra, essential spectra, and numerical ranges.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
3
Numer
1
Strony
77-84
Opis fizyczny
Daty
otrzymano
2015-10-09
zaakceptowano
2016-04-27
online
2016-05-16
Twórcy
  • Department of Mathematics, University of Nebraska, Omaha, NE 68182, USA
Bibliografia
  • [1] Bourdon P. S., Matache V., Shapiro J. H., On convergence to the Denjoy-Wolff point, Illinois J. Math. 49 (2005), no. 2, 405-430.
  • [2] Bourdon P. S., Narayan S. K., Normal weighted composition operators on the Hardy space H2.U/, J. Math. Anal. Appl. 367(2010), 278-286.
  • [3] Cowen, C. C., Ko, E., Hermitian weighted composition operators on H2, Trans. Amer. Math. Soc., 362(2010), no. 11, 5771-5801.
  • [4] Duren P., Theory of Hp Spaces, Pure and Applied Mathematics, Vol. 38 Academic Press, New York–London 1970.
  • [5] Elliott S., Jury M. T., Composition operators on Hardy spaces of a half-plane, Bull. Lond. Math. Soc. 44 (2012), no. 3, 489-495.
  • [6] Gunatillake G., Invertible weighted composition operators, J. Funct. Anal. 261 (2011), no. 3, 831-860.
  • [7] Hoffman K., Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1962.
  • [8] Hyvarinen O., Lindstrom M., Nieminen I., Saukko E., Spectra of weighted composition operators with automorphic symbols, J. Funct. Anal. 265 (2013), 1749-1777.
  • [9] Matache V., Composition operators on Hp of the upper half-plane, An. Univ. Timis¸oara Ser. S¸ tiin¸t. Mat. 27 (1989), no. 1, 63-66.
  • [10] Matache V., Notes on hypercyclic operators, Acta Sci. Math. (Széged) 58(1993), no. 1-4, 401-410.
  • [11] Matache V., Composition operators on Hardy spaces of a half-plane, Proc. Amer. Math. Soc. 127 (1999), no. 5, 1483-1491.
  • [12] Matache V., Weighted composition operators on H2 and applications, Complex Anal. Oper. Theory 2 (2008), no. 1, 169-197.
  • [13] Matache V., Numerical ranges of composition operators with inner symbols, Rocky Mountain J. Math. 42(2012), no. 1, 235-249.
  • [14] Matache V., Isometric weighted composition operators, New York J. Math. 20(2014), 711-726.
  • [15] Nordgren E. A., Composition operators, Canad. J. Math. 20(1968), 442-449.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_conop-2016-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.