Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników


2016 | 3 | 1 | 52-67

Tytuł artykułu

On some spaces of holomorphic functions of exponential growth on a half-plane

Treść / Zawartość

Warianty tytułu

Języki publikacji



In this paper we study spaces of holomorphic functions on the right half-plane R, that we denote by Mpω, whose growth conditions are given in terms of a translation invariant measure ω on the closed half-plane R. Such a measure has the form ω = ν ⊗ m, where m is the Lebesgue measure on R and ν is a regular Borel measure on [0, +∞). We call these spaces generalized Hardy–Bergman spaces on the half-plane R. We study in particular the case of ν purely atomic, with point masses on an arithmetic progression on [0, +∞). We obtain a Paley–Wiener theorem for M2ω, and consequentely the expression for its reproducing kernel. We study the growth of functions in such space and in particular show that Mpω contains functions of order 1. Moreover, we prove that the orthogonal projection from Lp(R,dω) into Mpω is unbounded for p ≠ 2. Furthermore, we compare the spaces Mpω with the classical Hardy and Bergman spaces, and some other Hardy– Bergman-type spaces introduced more recently.










Opis fizyczny




  • Dipartimento di Matematica, Università degli Studi di Milano, Via C. Saldini 50, 20133 Milano, Italy
  • Dipartimento di Matematica, Università degli Studi di Milano, Via C. Saldini 50, 20133 Milano, Italy


  • [1] Butzer, Paul L. and Jansche, Stefan, A self-contained approach to Mellin transform analysis for square integrable functions; applications, Integral Transform. Spec. Funct., 8, 1999, 3-4, 175–198
  • [2] Chalendar, Isabelle and Partington, Jonathan R., Norm estimates for weighted composition operators on spaces of holomorphic functions, Complex Anal. Oper. Theory, 8, 2014, 5, 1087–1095
  • [3] Dostani´c, Milutin R., Unboundedness of the Bergman projections on Lp spaces with exponential weights, Proc. Edinb. Math. Soc. (2), 47, 2004, 1, 111–117
  • [4] Duren, Peter and Gallardo-Gutiérrez, Eva A. and Montes-Rodríguez, Alfonso, A Paley-Wiener theorem for Bergman spaces with application to invariant subspaces, Bull. Lond. Math. Soc., 39, 2007, 3, 459–466
  • [5] Fuchs, W. H. J., A generalization of Carlson’s theorem, J. London Math. Soc., 21, 1946, 106–110
  • [6] Fuchs, W. H. J., On the closure of {e-t tav}, Proc. Cambridge Philos. Soc., 42, 1946, 91–105
  • [7] Garrigós, Gustavo, Generalized Hardy spaces on tube domains over cones, Colloq. Math., 90, 2001, 2, 213–251
  • [8] Harper, Zen, Boundedness of convolution operators and input-output maps between weighted spaces, Complex Anal. Oper. Theory, 3, 2009, 1, 113–146
  • [9] Harper, Zen, Laplace transform representations and Paley-Wiener theorems for functions on vertical strips, Doc. Math., 15, 2010, 235–254
  • [10] Jacob, Birgit and Partington, Jonathan R. and Pott, Sandra, On Laplace-Carleson embedding theorems, J. Funct. Anal., 264, 2013, 3, 783–814
  • [11] Jacob, Birgit and Partington, Jonathan R. and Pott, Sandra, Weighted interpolation in Paley-Wiener spaces and finite-time controllability, J. Funct. Anal., 259, 2010, 9, 2424–2436
  • [12] Krantz, Steven G. and Peloso, Marco M., The Bergman kernel and projection on non-smooth worm domains, Houston J. Math., 34, 2008, 3, 873–950
  • [13] Krantz, Steven G. and Peloso, Marco M. and Caterina Stoppato, Bergman kernel and projection on the unbounded Diederich– Fornæss worm domain, Ann. Sc. Norm. Super. Pisa Cl. Sci., 2015
  • [14] Krantz, Steven G. and Peloso, Marco M. and Caterina Stoppato, Completeness on the worm domain and the Müntz–Szász problem for the Bergman space, preprint, 2015
  • [15] Kriete, Thomas L. and Trutt, David, On the Cesàro operator, Indiana Univ. Math. J., 24, 1974/75, 197–214
  • [16] Kriete, T. L. and Trutt, David, The Cesàro operator in l2 is subnormal, Amer. J. Math., 93, 1971, 215–225
  • [17] Lebedev, N. N., Special functions and their applications, Dover Publications, Inc., New York, 1972, xii+308
  • [18] Lukacs, Eugene, Some extensions of a theorem of Marcinkiewicz, Pacific J. Math., 8, 1958, 487–501
  • [19] Lukacs, Eugene, Les fonctions caractéristiques analytiques, Ann. Inst. H. Poincaré, 15, 1957, 217–251
  • [20] Müntz, C. H., Über den Approximationssatz con Weierstrass, in: H. A. Schwarz’s Festschrift, Berlin, 1914, 303-312
  • [21] Paley, Raymond E. A. C. and Wiener, Norbert, Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, 19, American Mathematical Society, Providence, RI, 1934, x+184
  • [22] Peláez, José Ángel and Rättyä, Jouni, Embedding theorems for Bergman spaces via harmonic analysis, Math. Ann., 362, 2015, 1-2, 205–239
  • [23] Peláez, José Ángel and Rättyä, Jouni, Two weight inequality for Bergman projection, J. Math. Pures Appl. (9), 105, 2016, 1, 102–130
  • [24] Peláez, José Ángel and Rättyä, Jouni, Trace class criteria for Toeplitz and composition operators on small Bergman spaces, Adv. Math., 293, 2016, 606–643
  • [25] Peloso, Marco M. and Salvatori, Maura, Functions of exponential growth on a half-plane, sets of uniqueness and the Müntz– Szász problem for the Bergman space, preprint, 2015
  • [26] Sedletskii, A. M., Complete and incomplete systems of exponentials in spaces with a power weight on a half-line, Moscow Univ. Math. Bull., 69, 2014, 2, 73–76
  • [27] Szász, Otto, Über die Approximation stetiger Funktionen durch lineare Aggregate von Potenzen, Math. Ann., 77, 1916, 4, 482– 496

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.