Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
If H denotes a Hilbert space of analytic functions on a region Ω ⊆ Cd , then the weak product is defined by [...] We prove that if H is a first order holomorphic Besov Hilbert space on the unit ball of Cd , then the multiplier algebras of H and of H ⊙ H coincide.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
25-28
Opis fizyczny
Daty
otrzymano
2015-10-30
zaakceptowano
2016-01-27
online
2016-04-12
Twórcy
autor
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA
autor
- Department of Mathematics, Washington University – St. Louis, St. Louis, MO 63130, USA and School of Mathematics, Georgia Institute of Technology, Atlanta GA 30332-0160, USA
Bibliografia
- [1] Arcozzi, Nicola and Rochberg, Richard and Sawyer, Eric and Wick, Brett D., Bilinear forms on the Dirichlet space, Anal. PDE, 3, 2010, no. 1, 21–47.
- [2] Beatrous, Frank and Burbea, Jacob, Holomorphic Sobolev spaces on the ball, Dissertationes Math. (Rozprawy Mat.), Polska Akademia Nauk. Instytut Matematyczny. Dissertationes Mathematicae. Rozprawy Matematyczne, 276, 1989.
- [3] Cascante, Carme and Ortega, Joaquin M., On a characterization of bilinear forms on the Dirichlet space, Proc. Amer. Math. Soc., 140, 2012, no. 7, 2429–2440.
- [4] Cascante, Carme and Fàbrega, Joan and Ortega, Joaquín M., On weighted Toeplitz, big Hankel operators and Carleson measures, Integral Equations Operator Theory, 66, 2010, no.4, 495–528.
- [5] Coifman, R. R. and Rochberg, R. and Weiss, Guido, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2) , 103, 1976, no. 3, 611–635.
- [6] Luo, Shuaibing and Richter, Stefan, Hankel operators and invariant subspaces of the Dirichlet space, J. Lond. Math. Soc. (2), 91, 2015, no. 2, 423–438.
- [7] Luo, Shuaibing, On the Index of Invariant Subspaces in the Space of Weak Products of Dirichlet Functions, Complex Anal. Oper. Theory, 9, 2015, no. 6, 1311–1323.
- [8] Ortega, Joaquín and Fàbrega, Joan, Multipliers in Hardy-Sobolev spaces, Integral Equations Operator Theory, 55, 2006, no. 4, 535–560.
- [9] Richter, Stefan and Sundberg, Carl, Weak products of Dirichlet functions, J. Funct. Anal., 266, 2014, no. 8, 5270–5299.
- [10] Richter, Stefan and Sunkes, James, Hankel operators, Invariant subspaces, and cyclic vectors in the Drury-Arveson space, Proc. Amer. Math. Soc., Proc. Amer. Math. Soc., to appear.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_conop-2016-0004