[2] Agler, J., McCarthy, J.E., Global holomorphic functions in several non-commuting variables, 2015, Canad. J. Math., 67, 2, 241–285,
[3] Agler, J., McCarthy, J.E., Non-commutative holomorphic functions on operator domains, 2015, European J. Math, 1, 4, 731–745,
[4] Agler, J., McCarthy, J.E., The implicit function theorem and free algebraic sets, 2016, Trans. Amer. Math. Soc., 368, 5, 3157–3175,
[5] Alpay, D., Kalyuzhnyi-Verbovetzkii, D. S., Matrix-J-unitary non-commutative rational formal power series, 2006, The state space method generalizations and applications, Oper. Theory Adv. Appl., 161, Birkhäuser, Basel, 49–113,
[6] Ambrozie, C.-G., Timotin, D., A von Neumann type inequality for certain domains in Cn, 2003, Proc. Amer. Math. Soc., 131, 859–869,
[7] Ball, J.A., Bolotnikov, V., Realization and interpolation for Schur-Agler class functions on domains with matrix polynomial defining function in Cn, 2004, J. Funct. Anal., 213, 45–87,
[8] Ball, Joseph A., Groenewald, Gilbert, Malakorn, Tanit, Conservative structured noncommutative multidimensional linear systems, 2006, bookThe state space method generalizations and applications, Oper. Theory Adv. Appl., 161, Birkhäuser, Basel, 179–223,
[9] Boyd, Stephen, El Ghaoui, Laurent, Feron, Eric, Balakrishnan, Venkataramanan, Linear matrix inequalities in system and control theory, SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994, 15, 0-89871-334-X, http://dx.doi.org/10.1137/1.9781611970777,
[10] Cimpric, Jakob, Helton, J. William, McCullough, Scott, Nelson, Christopher, A noncommutative real nullstellensatz corresponds to a noncommutative real ideal: algorithms, 2013, 0024-6115, Proc. Lond. Math. Soc. (3), 106, 5, 1060–1086, http://dx.doi.org.libproxy.wustl.edu/10.1112/plms/pds060,
[11] Dineen, Seán, Complex analysis on infinite-dimensional spaces, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 1999, 1-85233-158-5, http://dx.doi.org/10.1007/978-1-4471-0869-6,
[12] Helton, J. William, “Positive” noncommutative polynomials are sums of squares, 2002, 0003-486X, Ann. of Math. (2), 156, 2, 675–694, http://dx.doi.org/10.2307/3597203,
[13] Helton, J. William, Klep, Igor, McCullough, Scott, Analytic mappings between noncommutative pencil balls, 2011, J. Math. Anal. Appl., 376, 2, 407–428,
[14] Helton, J. William, Klep, Igor, McCullough, Scott, Proper analytic free maps, 2011, J. Funct. Anal., 260, 5, 1476–1490,
[15] Helton, J. William, Klep, Igor, McCullough, Scott, Convexity and semidefinite programming in dimension-free matrix unknowns, 2012, bookHandbook on semidefinite, conic and polynomial optimization, Internat. Ser. Oper. Res. Management Sci., 166, Springer, New York, 377–405, http://dx.doi.org/10.1007/978-1-4614-0769-0_13,
[16] Helton, J. William, Klep, Igor, McCullough, Scott, Free analysis, convexity and LMI domains, 2012, bookOperator theory: Advances and applications, vol. 41, Springer, Basel, 195–219,
[18] Helton, J. William, McCullough, Scott, Every convex free basic semi-algebraic set has an LMI representation, 2012, Ann. of Math. (2), 176, 2, 979–1013,
[19] Helton, J. William, McCullough, Scott, Putinar, Mihai, Vinnikov, Victor, Convex matrix inequalities versus linear matrix inequalities, 2009, 0018-9286, IEEE Trans. Automat. Control, 54, 5, 952–964, http://dx.doi.org/10.1109/TAC.2009.2017087,
[20] Helton, J. William, McCullough, Scott A., A Positivstellensatz for non-commutative polynomials, 2004, 0002-9947, Trans. Amer. Math. Soc., 356, 9, 3721–3737 (electronic), http://dx.doi.org.libproxy.wustl.edu/10.1090/S0002-9947-04-03433-6,
[21] Kaliuzhnyi-Verbovetskyi, Dmitry S., Vinnikov, Victor, Foundations of free non-commutative function theory, AMS, Providence, 2014,
[22] McCarthy, J.E., Timoney, R., Nc automorphisms of nc-bounded domains, Proc. Royal Soc. Edinburgh, to appear,
[23] Muhly, Paul S., Solel, Baruch, Tensorial function theory: from Berezin transforms to Taylor’s Taylor series and back, 2013, 0378- 620X, Integral Equations Operator Theory, 76, 4, 463–508, http://dx.doi.org.libproxy.wustl.edu/10.1007/s00020-013-2062-4,
[24] Pascoe, J. E., The inverse function theorem and the Jacobian conjecture for free analysis, 2014, 0025-5874, Math. Z., 278, 3-4, 987–994, http://dx.doi.org/10.1007/s00209-014-1342-2,
[25] Pascoe, J.E., Tully-Doyle, R., Free Pick functions: representations, asymptotic behavior and matrix monotonicity in several noncommuting variables, arXiv:1309.1791,
[26] Popescu, Gelu, Free holomorphic functions on the unit ball of B.H/n, 2006, J. Funct. Anal., 241, 1, 268–333,