Univ Lille Nord de France, U-Artois, Laboratoire de Mathématiques de Lens EA 2462 & Fédération CNRS Nord-Pas-de-Calais FR 2956, Faculté des Sciences Jean Perrin, Rue Jean Souvraz, S.P. 18, 62300 Lens, France
Univ Lille Nord de France, USTL, Laboratoire Paul Painlevé U.M.R. CNRS 8524 & Fédération CNRS Nord-Pasde- Calais FR 2956, 59655 Villeneuve d’Ascq Cedex, France
Universidad de Sevilla, Facultad de Matemáticas, Departamento de Análisis Matemático & IMUS, Apartado de Correos 1160, 41080 Sevilla, Spain
Bibliografia
[1] B. Carl, A. Hinrichs, Optimal Weyl-type inequalities for operators in Banach spaces, Positivity 11 (2007), 41–55.
[2] B. Carl, I. Stephani, Entropy, Compactness and the Approximation of Operators, Cambridge Tracts in Mathematics, Vol. 98 (1990).
[3] B. Carl, H. Triebel, Inequalities between eigenvalues, entropy numbers, and related quantities of compact operators in Banach spaces, Math. Ann. 251 (1980), 129–133.
[4] P. L. Duren, Theory of Hp Spaces, Dover Public. (2000).
[5] J. Garnett, Bounded Analytic Functions, revised first edition, Graduate Texts in Mathematics 236, Springer-Verlag (2007).
[6] K. Hoffman, Banach Spaces of Analytic Functions, revised first edition, Prentice-Hall (1962).
[7] C. V. Hutton, On the approximation numbers of an operator and its adjoint, Math. Ann. 210 (1974), 277–280.
[8] P. Lefèvre, D. Li, H. Queffélec, L. Rodríguez-Piazza, Some new properties of composition operators associated to lensmaps, Israel J. Math. 195 (2) (2013), 801–824.
[9] D. Li and H. Queffélec, Introduction à l’étude des espaces de Banach. Analyse et probabilités, Cours Spécialisés 12, Société Mathématique de France, Paris (2004).
[10] D. Li, H. Queffélec, L. Rodríguez-Piazza, On approximation numbers of composition operators, J. Approx. Theory 164 (4) (2012), 431–459.
[11] D. Li, H. Queffélec, L. Rodríguez-Piazza, Estimates for approximation numbers of some classes of composition operators on the Hardy space, Ann. Acad. Sci. Fenn. Math. 38 (2013), 547–564.
[12] D. Li, H. Queffélec, L. Rodríguez-Piazza, A spectral radius type formula for approximation numbers of composition operators, J. Funct. Anal., 267 (2014), no. 12, 4753–4774.
[13] R. Mortini, Thin interpolating sequences in the disk, Arch. Math. 92, no. 5 (2009), 504–518.
[14] N. Nikol’skiˇı, A treatise on the Shift Operator, Grundlehren der Math. 273, Springer-Verlag (1986).
[15] S. Petermichl, S. Treil, B.D. Wick, Carleson potentials and the reproducing kernel thesis for embedding theorems, Illinois J. Math. 51, no. 4 (2007), 1249–1263.
[16] A. Pietsch, s-numbers of operators in Banach spaces, Studia Math. LI (1974), 201–223.
[17] A. Plichko, Rate of decay of the Bernstein numbers, Zh. Mat. Fiz. Anal. Geom. 9, no. 1 (2013), 59–72.
[18] H. Queffélec, K. Seip, Decay rates for approximation numbers of composition operators, J. Anal. Math., 125 (2015), no. 1, 371–399.