PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 2 | 1 |
Tytuł artykułu

Approximation numbers of composition operators on Hp

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
give estimates for the approximation numbers of composition operators on the Hp spaces, 1 ≤ p < ∞
Wydawca
Czasopismo
Rocznik
Tom
2
Numer
1
Opis fizyczny
Daty
otrzymano
2015-02-23
zaakceptowano
2015-07-07
online
2015-07-22
Twórcy
autor
  • Univ Lille Nord de France, U-Artois, Laboratoire de Mathématiques de Lens EA 2462 &
    Fédération CNRS Nord-Pas-de-Calais FR 2956, Faculté des Sciences Jean Perrin, Rue Jean Souvraz, S.P. 18, 62300 Lens, France
  • Univ Lille Nord de France, USTL, Laboratoire Paul Painlevé U.M.R. CNRS 8524 & Fédération CNRS Nord-Pasde-
    Calais FR 2956, 59655 Villeneuve d’Ascq Cedex, France
  • Universidad de Sevilla, Facultad de Matemáticas, Departamento de Análisis Matemático & IMUS,
    Apartado de Correos 1160, 41080 Sevilla, Spain
Bibliografia
  • [1] B. Carl, A. Hinrichs, Optimal Weyl-type inequalities for operators in Banach spaces, Positivity 11 (2007), 41–55.
  • [2] B. Carl, I. Stephani, Entropy, Compactness and the Approximation of Operators, Cambridge Tracts in Mathematics, Vol. 98(1990).
  • [3] B. Carl, H. Triebel, Inequalities between eigenvalues, entropy numbers, and related quantities of compact operators inBanach spaces, Math. Ann. 251 (1980), 129–133.
  • [4] P. L. Duren, Theory of Hp Spaces, Dover Public. (2000).
  • [5] J. Garnett, Bounded Analytic Functions, revised first edition, Graduate Texts in Mathematics 236, Springer-Verlag (2007).
  • [6] K. Hoffman, Banach Spaces of Analytic Functions, revised first edition, Prentice-Hall (1962).
  • [7] C. V. Hutton, On the approximation numbers of an operator and its adjoint, Math. Ann. 210 (1974), 277–280.
  • [8] P. Lefèvre, D. Li, H. Queffélec, L. Rodríguez-Piazza, Some new properties of composition operators associated to lensmaps,Israel J. Math. 195 (2) (2013), 801–824.
  • [9] D. Li and H. Queffélec, Introduction à l’étude des espaces de Banach. Analyse et probabilités, Cours Spécialisés 12, SociétéMathématique de France, Paris (2004).
  • [10] D. Li, H. Queffélec, L. Rodríguez-Piazza, On approximation numbers of composition operators, J. Approx. Theory 164 (4)(2012), 431–459.
  • [11] D. Li, H. Queffélec, L. Rodríguez-Piazza, Estimates for approximation numbers of some classes of composition operators onthe Hardy space, Ann. Acad. Sci. Fenn. Math. 38 (2013), 547–564.
  • [12] D. Li, H. Queffélec, L. Rodríguez-Piazza, A spectral radius type formula for approximation numbers of composition operators,J. Funct. Anal., 267 (2014), no. 12, 4753–4774.
  • [13] R. Mortini, Thin interpolating sequences in the disk, Arch. Math. 92, no. 5 (2009), 504–518.
  • [14] N. Nikol’skiˇı, A treatise on the Shift Operator, Grundlehren der Math. 273, Springer-Verlag (1986).
  • [15] S. Petermichl, S. Treil, B.D. Wick, Carleson potentials and the reproducing kernel thesis for embedding theorems, Illinois J.Math. 51, no. 4 (2007), 1249–1263.
  • [16] A. Pietsch, s-numbers of operators in Banach spaces, Studia Math. LI (1974), 201–223.
  • [17] A. Plichko, Rate of decay of the Bernstein numbers, Zh. Mat. Fiz. Anal. Geom. 9, no. 1 (2013), 59–72.
  • [18] H. Queffélec, K. Seip, Decay rates for approximation numbers of composition operators, J. Anal. Math., 125 (2015), no. 1,371–399.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_conop-2015-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.