EN
Let (X, L) be a polarized algebraic manifold. Then for every test configuration μ = (X, L,Ψ) for (X, L) of exponent ℓ, we obtain an ℓ-th root (κ, D) of μ and Gm-equivariant desingularizations ι : ^X → X and η : ^X → Y, both isomorphic on^X \^X 0, such that [...] whereκ= (Y, Q, η) is a test configuration for (X, L) of exponent 1, and D is an effective Q-divisor on^X such that ℓD is an integral divisor with support in the fiber X0. Then (κ, D) can be chosen in such a way that [...] where C1 and C2 are positive real constants independent of the choice of μ and ℓ. This plays an important role in our forthcoming papers on the existence of constant scalar curvature Kähler metrics (cf. [6]) and also on the compactified moduli space of test configurations (cf. [5],[7]).