Warianty tytułu
Języki publikacji
Abstrakty
We show that for n > 2 a compact locally conformally Kähler manifold (M2n , g, J) carrying a nontrivial parallel vector field is either Vaisman, or globally conformally Kähler, determined in an explicit way by a compact Kähler manifold of dimension 2n − 2 and a real function.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
Daty
otrzymano
2015-05-13
zaakceptowano
2015-05-30
online
2015-07-09
Twórcy
autor
-
Université de Versailles-St Quentin, Laboratoire de Mathématiques, UMR 8100 du
CNRS, 45 avenue des États-Unis, 78035 Versailles, France
Bibliografia
- [1] F. Belgun, On the metric structure of non-Kähler complex surfaces, Math. Ann. 317 (2000), 1–40.
- [2] N. Buchdahl, On compact Kähler surfaces, Ann. Inst. Fourier 49 no. 1 (1999), 287–302. [Crossref]
- [3] S. Dragomir, L. Ornea, Locally conformal Kähler geometry, Progress in Math. 155, Birkhäuser, Boston, Basel, 1998.
- [4] P. Gauduchon, A. Moroianu, L. Ornea, Compact homogeneous lcK manifolds are Vaisman, Math. Ann. 361 (3-4), (2015), 1043– 1048. [WoS]
- [5] P. Gauduchon, L. Ornea, Locally conformally Kähler metrics on Hopf surfaces, Ann. Inst. Fourier 48 no. 4 (1998), 1107–1127. [Crossref]
- [6] A. Lamari, Courants kählériens et surfaces compactes, Ann. Inst. Fourier 49 no. 1 (1999), 263–285. [Crossref]
- [7] L. Ornea, M. Verbitsky, Structure theorem for compact Vaisman manifolds, Math. Res. Lett., 10 (2003), 799–805.
- [8] I. Vaisman, A survey of generalizedHopf manifolds, Rend. Sem.Mat. Univ. Politec. Torino 1983, Special Issue (1984), 205–221.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_coma-2015-0004