PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 2 | 1 |
Tytuł artykułu

Non-linear flow-induced vibrations in deformable curved bodies: A lattice Boltzmann-immersed boundary-finite element study

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The dynamic response of a deformable curved solid body is investigated as it interacts with a flow field. The fluid is assumed to be viscous and the flow is nearly incompressible. Fluid dynamics is predicted through a lattice Boltzmann solver. Corotational beam finite elements undergoing large displacements are adopted to idealize the submerged body, whose presence in the lattice fluid background is handled by the immersed boundary method. The attention focuses on the solid’s deformation and a numerical campaign is carried out. Findings are reported in terms of deformation energy and deformed configuration. On the one hand, it is shown that the solution of the problem is strictly dependent on the elastic properties of the body. On the other hand, the encompassing flow physics plays a crucial role on the resultant solid dynamics. With respect to the existing literature, the present problem is attacked by a new point of view. Specifically, the author proposes that the problem is governed by four dimensionless parameters: the Reynolds number, the normalized elastic modulus, the density and aspect ratii. The formulation and the solution strategy for curved solid bodies herein adopted are introduced for the first time in this paper.
Wydawca
Rocznik
Tom
2
Numer
1
Opis fizyczny
Daty
otrzymano
2015-04-10
zaakceptowano
2015-05-15
online
2015-05-27
Twórcy
  • Laboratoire de
    Mecanique des Fluides et d’Acoustique, Ecole Centrale de Lyon,
    36 avenue Guy de Collongue, 69134 Ecully cedex, France
Bibliografia
  • ---
  • [1] Qin Z., Batra R.C. Local slamming impact of sandwich compositehulls. Int. J. Solids Struct., 2009, 46, 2011-2035.[Crossref]
  • [2] Panciroli R., Abrate S., Minak G., Zucchelli A. Hydroelasticity inwater-entry problems: Comparison between experimental andSPH results. Compos. Struct., 2012, 94, 532-539.[Crossref]
  • [3] Panciroli R., Abrate S., Minak G. Dynamic response of flexiblewedges entering the water. Compos. Struct., 2013, 99, 163-171.
  • [4] Shrivastava S., Mohite P.M. Redesigning of a canard control surfaceof an advanced fighter aircraft: Effect on buckling and aerodynamicbehavior. Curved and Layer. Struct., 2015, 2, 183-193.
  • [5] Ke L., Yang J., Kitipornchai S. An analytical study on the nonlinearvibration of functionally graded beams. Meccanica, 2010,45, 743-752.[Crossref]
  • [6] Tornabene F., Fantuzzi N., Bacciocchi M. Free vibrations of freeformdoubly-curved shells made of functionally graded materialsusing higher-order equivalent single layer theories. Compos.Part B, 2014, 67, 490-509.
  • [7] Amabili M. Nonlinear vibrations of laminated circular cylindricalshells: comparison of different shell theories. Compos. Struct.,2011, 94, 207-220.[Crossref]
  • [8] Viola E., Tornabene F., Fantuzzi N. General higher-order sheardeformation theories for the free vibration analysis of completelydoubly-curved laminated shells and panels. Compos.Struct., 2013, 95, 639-666.[Crossref]
  • [9] Natarajan S., Ferreira A.J.M., Nguyen-Xuan H. Analysis of crossplylaminated plates using isogeometric analysis and unifiedformulation. Curved and Layer. Struct., 2015, 1, 1-10.
  • [10] Sahoo S. Free vibration behavior of laminated composite stiffenedelliptic parabolic shell panel with cutout. Curved andLayer. Struct., 2015, 2, 162-182.
  • [11] Liu B., Xing Y.F., Qatu M.S., Ferreira A.J.M. Exact characteristicequations for free vibrations of thin orthotropic circular cylindricalshells. Compos. Struct., 2012, 94, 484-493.
  • [12] Pellicano F., Amabili M., Paidoussis M.P. Effect of the geometryon the non-linear vibration of circular cylindrical shells. Int. J.Nonlin. Mech., 2002, 37, 1181-1198.[Crossref]
  • [13] Gonçalves P.B., Del Prado Z.G. Effect of non-linear modal interactionon the dynamic instability of axially excited cylindricalshells. Comput. Struct., 2004, 82, 2621-2634.
  • [14] Ferreira A.J.M., Carrera E., Cinefra M., Viola E., Tornabene F., FantuzziN., Zenkour A.M. Analysis of thick isotropic and cross-plylaminated plates by generalized differential quadrature methodand a unified formulation. Compos. Part B, 2014, 58, 544-552.
  • [15] Kubenko V.D., Kovalchuk P.S., Kruk L.A.. Nonlinear vibrations ofcylindrical shells filledwith a fluid and subjected to longitudinaland transverse periodic excitation. Int. Appl. Mech., 2010, 46,186-194.[Crossref]
  • [16] Firouz-Abadi R.D., Noorian M.A., Haddadpour H. A fluidstructureinteraction model for stability analysis of shells conveyingfluid. J. Fluid Struct., 2010, 26, 747-763.[Crossref]
  • [17] Amabili M., Pellicano F., Paidoussis M.P. Non-linear dynamicsand stability of circular cylindrical shells containing flowingfluid. Part I: stability. J. Sound Vib., 1999, 225, 655-699.
  • [18] Amabili M., Pellicano F., Paidoussis M.P. Non-linear dynamicsand stability of circular cylindrical shells containing flowingfluid. Part II: large-amplitude vibrations without flow. J. SoundVib., 1999, 228, 1103-1124.
  • [19] Amabili M., Pellicano F., Paidoussis M.P. Non-linear dynamicsand stability of circular cylindrical shells containing flowingfluid. Part III: truncation effect without flow and experiments. J.Sound Vib., 2000, 237, 617-640.
  • [20] Amabili M., Pellicano F., Paidoussis M.P. Non-linear dynamicsand stability of circular cylindrical shells containing flowingfluid. Part IV: large-amplitude vibrationswith flow. J. Sound Vib.,2000, 237, 641-666.
  • [21] Karagiozis K.N., Amabili M., Paidoussis M.P., Misra K. Nonlinearvibrations of fluid-filled clamped circular cylindricalshells. J. Fluid Struct., 2005, 21, 579-595.[Crossref]
  • [22] Karagiozis K.N., Amabili M., Paidoussis M.P., Misra K. Effectof geometry on the stability of cylindrical clamped shells subjectedto internal fluid flow. Comput. Struct., 2007, 85, 645-659.
  • [23] Del Prado Z.J.G.N. , Gonçalves P.B., Paidoussis M.P. Non-linearvibrations and imperfection sensitivity of a cylindrical shell containingaxial fluid flow. J. Sound Vib., 2009, 327, 211-230.
  • [24] Amabili M., Karagiozis K.N., Paidoussis M.P. Effect of geometricimperfections on non-linear stability of circular cylindricalshells conveying fluid. Int. J. Nonlin. Mech., 2009, 44, 276-289.[Crossref]
  • [25] Iakovlev S., Seaton C.T., Sigrist J.F. Submerged circular cylindricalshell subjected to two consecutive shockwaves: Resonancelikephenomena. J. Fluid Struct., 2013, 42, 70-87.
  • [26] Iakovlev S., Mitchell M., Lefieux A., Murray R.. Shock responseof a two-fluid cylindrical shell system containing a rigid core.Comput. Fluids, 2014, 96, 215-225.[Crossref]
  • [27] Bochkarev S.A., Lekomtsev S.V., Matveenko V.P.. Natural vibrationsof loaded noncircular cylindrical shells containing a quiescentfluid. Thin Wall. Struct., 2015, 90, 12-22.
  • [28] Fu Y, Price W.G.. Interactions between a partially or totally immersedvibrating cantilever plate and the surrounding fluid. J.Sound Vib., 1987, 118, 495-513.
  • [29] Kovalchuk P.S., Podchasov N.P. Stability of elastic cylindricalshells interacting with flowing fluid. Int. Appl. Mech., 2010, 46,60-68.[Crossref]
  • [30] Breslavsky I.D., Strelnikova E.A., Avramov K.V. Dynamics ofshallow shells with geometrical nonlinearity interacting withfluid. Comput. Struct., 2011, 89, 496-506.
  • [31] Kubenko V.D., Kovalchuk P.S., Podchasov N.P. Analysis of nonstationaryprocesses in cylindrical shells interacting with a fluidflow. Int. Appl. Mech., 2011, 46, 1119-1131.
  • [32] Kovalchuk P.S., Podchasov N.P. Influence of initial deflectionson the stability of composite cylindrical shells interacting witha fluid flow. Int. Appl. Mech., 2011, 46, 902-911.[Crossref]
  • [33] Kovalchuk P.S., Kruk L.A., Pelykh V.A. Stability of differentlyfixed composite cylindrical shells interactingwith fluid flow. Int.Appl. Mech., 2014, 50, 664-676.[Crossref]
  • [34] Avramov K.V., Strelnikova E. A., Pierre C. Resonant manymodeperiodic and chaotic self-sustained aeroelastic vibrationsof cantilever plates with geometrical non-linearities in incompressibleflow. Nonlinear Dynam., 2012, 70, 1335-1354.
  • [35] Avramov K.V., Strelnikova E. A. Chaotic oscillations of plates interactingon both sides with a fluid flow. Int. Appl. Mech., 2014,50, 303-309.[Crossref]
  • [36] Higuera F.J. , Succi S., Benzi R.. Lattice gas dynamics with enhancedcollisions. Europhys. Lett., 1989, 9, 345-349.[Crossref]
  • [37] Benzi R., Succi S., Vergassola M. The lattice Boltzmann equation:theory and applications. Phys. Rep., 1992, 222, 145-197.
  • [38] Succi S. The Lattice Boltzmann Equation for Fluid Dynamics andBeyond. Clarendon, 2001.
  • [39] Chen H., Chen S.,MatthaeusW.H. Recovery of the Navier-Stokesequations using a lattice-gas Boltzmann method. Phys. Rev.Lett., 1992, 5, R5339-R5342.
  • [40] Fadlun E.A., Verzicco R., Orlandi P., Mohd-Yusof J. Combinedimmersed-boundary finite-difference methods for threedimensionalcomplex flow simulations. J. Comput. Phys., 2000,161, 35-60.
  • [41] Peskin C.S. The immersed boundary method. Acta Num., 2002,11, 479-517.
  • [42] Wu J. and Shu C. Implicit velocity correction-based immersedboundary-lattice Boltzmann method and its applications. J.Comput. Phys., 2009, 228, 1963-1979.
  • [43] Sotiropoulos F., Yang X.. Immersed boundary methods for simulatingfluid-structure interaction. Progr. Aerosp. Sci., 2014, 65,1-21.
  • [44] Filippova O., Hanel D. Lattice Boltzmann simulation of gasparticleflow in filters. Comput. Fluids, 1997, 26, 697-712.[Crossref]
  • [45] De Rosis A. Harmonic oscillations of laminae in non-Newtonianfluids: A lattice Boltzmann-immersed boundary approach Adv.Wat. Resour., 2014, 73, 97-107.
  • [46] Felippa C.A., Haugen B. A unified formulation of small-straincorotational finite elements: I. Theory. Comput. Method. Appl.M., 2005, 194, 2285-2335.
  • [47] Garcea G., Madeo A., Zagari G., Casciaro R. Asymptotic postbucklingfem analysis using corotational formulation. Int. J.Solids Struct., 2009, 46, 377-397.[Crossref]
  • [48] De Rosis A. A lattice Boltzmann model for multiphase flows interactingwith deformable bodies. Adv. Wat. Resour., 2014, 73,55-64.
  • [49] De Rosis A. On the dynamics of a tandem of asynchronousflapping wings: Lattice Boltzmann-immersed boundary simulations.Physica A, 2014, 410, 276-286.
  • [50] De Rosis A. Fluid forces enhance the performance of an aspirantleader in self-organized living groups. PloS ONE, 2014, 9,e114687.
  • [51] De Rosis A. Ground-induced lift enhancement in a tandem ofsymmetric flapping wings: Lattice Boltzmann-immersed boundarysimulations Comput. Struct., 2015, 153, 230-238.
  • [52] De Rosis A., Falcucci G., Ubertini S., Ubertini F. A coupled latticeBoltzmann-finite element approach for two-dimensional fluidstructureinteraction. Comput. Fluids, 2013, 86, 558-568.[Crossref]
  • [53] Geuzaine C., Remacle J.F. Gmsh: A 3-d finite element mesh generatorwith built-in pre-and post-processing facilities. Int J. Numer.Meth. Eng., 2009, 79, 1309-1331.
  • [54] FLUENT User Guide. Fluent inc. Lebanon NH, 2005, 3766.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_cls-2015-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.