PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 2 | 1 |
Tytuł artykułu

A nth-order shear deformation theory for composite laminates in cylindrical bending

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study investigates whether an nthorder shear deformation theory is applicable for the composite laminates in cylindrical bending. The theory satisfies the traction free conditions at top and bottom surfaces of the plate and does not require problem dependent shear correction factor which is normally associated with the first order shear deformation theory. The well-known classical plate theory at (n = 1) and higher order shear deformation theory of Reddy at (n = 3) are the perticular cases of the present theory. The governing equations of equilibrium and boundary conditions are obtained using the principle of virtual work. A simply supported laminated composite plate infinitely long in y-direction is considered for the detail numerical study. A closed form solution for simply supported boundary conditions is obtained using Navier’s technique. The displacements and stresses are obtained for different aspect ratios and modular ratios.
Wydawca
Rocznik
Tom
2
Numer
1
Opis fizyczny
Daty
otrzymano
2015-02-03
zaakceptowano
2015-04-12
online
2015-05-14
Twórcy
autor
  • Department of Civil Engineering, SRES’s College of Engineering,
    University of Pune, Kopargaon-423601, Maharashtra,
    India
autor
  • Department of Applied Mechanics, Government Engineering
    College, Karad-415124, Maharashtra, India
Bibliografia
  • [1] Mindlin R.D., Influence of rotatory inertia and shear on flexuralmotions of isotropic, elastic plates, ASME J. Appl. Mech., 1951,18, 31-38.
  • [2] Reddy J.N., A simple higher order theory for laminated compositeplates, ASME J. Appl. Mech., 1984, 51, 745-752.
  • [3] Touratier M., An eflcient standard plate theory, Int. J. Eng. Sci.,1991, 29, 901-916.[Crossref]
  • [4] Soldatos K.P., A transverse shear deformation theory for homogeneousmonoclinic plates, Acta Mech., 1992, 94, 195-220.[Crossref]
  • [5] Karama M., Afaq K.S., Mistou S., Mechanical behavior of laminatedcomposite beam by new multi-layered laminated compositestructures modelwith transverse shear stress continuity,Int. J. Solids Struct., 2003, 40, 1525-1546.
  • [6] Akavci S.S., Buckling and free vibration analysis of symmetricand anti-symmetric laminated composite plates on an elasticfoundation, J. Reinf. Plast. Compos., 2007, 26, 1907-1919.[WoS][Crossref]
  • [7] Pagano N.J., Exact solution for composite laminates in cylindricalbending, J. Compos. Mater., 1969, 3, 398-411.[Crossref]
  • [8] Reddy J.N., Mechanics of Laminated Composite Plates, CRCPress, Boca Raton 1997.
  • [9] Soldatos K.P., Watson P., A method for improving the stressanalysis performance of two-dimensional theories for compositelaminates, Acta Mech., 1997, 123, 163-186.
  • [10] Shu X.P., Soldatos K.P., Cylindrical bending of angle-ply laminatessubjected to different sets of edge boundary conditions,Int. J. Solids Struct., 2000, 37, 4289-4307.[Crossref]
  • [11] Jalali S.J., Taheri F., An analytical solution for cross-plylaminates under cylindrical bending based on through-thethicknessinextensibility, Part I-static loading, Int. J. SolidsStruct., 1998, 35, 1559-1574.
  • [12] Perel V.Y., Palazotta A.N., Finite element formulation for cylindricalbending of a transversely compressible sandwich platebased on assumed transverse strain, Int. J. Solids Struct., 2001,38, 5373-5409.[Crossref]
  • [13] Khdeir A.A., Free and forced vibration of antisymmetric angleplylaminated plate strips in cylindrical bending, J. Vib. Control,2001, 7, 781-801.[Crossref]
  • [14] Park J., Lee S.Y., A new exponential plate theory for laminatedcomposites under cylindrical bending, Trans. Japan Soc. Aero.Space Sci., 2003, 46, 89-95.
  • [15] Chen W.Q., Lee K.Y., State-space approach for statics and dynamicsof angle-ply laminated cylindrical panels in cylindricalbending, Int. J. Mech. Sci., 2005, 47, 374-387.[Crossref]
  • [16] Lu C.F., Huang Z.Y., ChenW.Q., Semi-analytical solutions for freevibration of anisotropic laminated plates in cylindrical bending,J. Sound Vib., 2007, 304, 987-995.[WoS]
  • [17] Carrera E., Nonlinear response of asymmetrically laminatedplates in cylindrical bending, AIAA J., 1992, 31(7), 1353-1357.
  • [18] Ghugal Y.M., Sayyad A.S., Cylindrical bending of thick orthotropicplate using trigonometric shear deformation theory,Int. J. Appl. Math. Mech., 2011, 7(5), 98-116.
  • [19] Sayyad A.S., Ghugal Y.M., Naik N.S., Bending analysis of laminatedcomposite and sandwich beams according to refinedtrigonometric beam theory, Curved Layer. Struct., 2015, 2, 279-289.
  • [20] Natarajan S., Ferreira A.J.M., Xuan H.N., Analysis of cross-plylaminated plates using isogeometric analysis and unified formulation,Curved Layer. Struct., 2014, 1, 1-10.
  • [21] Sun L., Harik I.E., Analytical solution to bending of stiffenedand continuous antisymmetric laminates, Curved Layer. Struct.,2015, 2, 254-270.
  • [22] Carpentieri G., Tornabene F., Ascione A., Fraternali F., An accurateone-dimensional theory for the dynamics of laminatedcomposite curved beams, J. Sound Vib., 2015, 336, 96-105.[WoS]
  • [23] Ferreira A.J.M., Viola E., Tornabene F., Fantuzzi N., Zenkour A.M.,Analysis of sandwich plates by generalized differential quadraturemethod, Math. Probl. Eng., 2013, Article ID 964367, 12pages, 2013. doi:10.1155/2013/964367.[WoS][Crossref]
  • [24] Carrera E., Filippi M., Zappino E., Free vibration analysis of laminatedbeam by polynomial, trigonometric, exponential and zigzagtheories, J. Compos. Mater., 2014, 48(19), 2299–2316.[WoS][Crossref]
  • [25] Tornabene F., 2-D GDQ solution for free vibrations of anisotropicdoubly-curved shells and panels of revolution, Compos. Struct.,2011, 93(7), 1854-1876.[Crossref][WoS]
  • [26] Tornabene F., Fantuzzi N., Viola E., Carrera E., Static analysisof doubly-curved anisotropic shells and panels using CUFapproach, differential geometry and differential quadraturemethod, Compos. Struct., 2014, 107, 675-697.[WoS]
  • [27] Xiang S., Kang G.W., Xing B., A nth-order shear deformation theoryfor the free vibration analysis on the isotropic plates, Meccanica,2012, 47, 1913-1921.[Crossref][WoS]
  • [28] Xiang S., Jiang S., Bi Z., Jin Y., Yang M., A nth-order meshlessgeneralization of Reddy’s third-order shear deformation theoryfor the free vibration on laminated composite plates, Compos.Struct., 2011, 93, 299-307.
  • [29] Xiang S., Kang G.W., A nth-order shear deformation theory forthe bending analysis on the functionally graded plates, Eur. J.Mech.: A/Solids, 2013, 37, 336-343.[WoS]
  • [30] Xiang S., Kang G.W., Liu Y. A nth-order shear deformation theoryfor natural frequency of the functionally graded plates on elasticfoundation, Compos. Struct., 2014, 111, 224-231.[WoS]
  • [31] Sayyad A.S., Ghumare S.M., Sasane S.T., Cylindrical bending oforthotropic plate strip based on nth-order plate theory, J.Mater.Eng. Struct., 2014, 1, 47-57.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_cls-2015-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.