Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 2 | 1 |
Tytuł artykułu

Bending analysis of laminated composite and sandwich beams according to refined trigonometric beam theory

Treść / Zawartość
Warianty tytułu
Języki publikacji
A trigonometric beam theory (TBT) is developed for the bending analysis of laminated composite and sandwich beams considering the effect of transverse shear deformation. The axial displacement field uses trigonometric function in terms of thickness coordinate to include the effect of transverse shear deformation. The transverse displacement is considered as a sum of two partial displacements, the displacement due to bending and the displacement due to transverse shearing. Governing equations and boundary conditions are obtained by using the principle of virtual work. To demonstrate the validity of present theory it is applied to the bending analysis of laminated composite and sandwich beams. The numerical results of displacements and stresses obtained by using present theory are presented and compared with those of other trigonometric theories available in literature along with elasticity solution wherever possible.
Opis fizyczny
  • Department of Civil Engineering, SRES’s College of Engineering,
    University of Pune, Kopargaon-423601, Maharashtra,
  • Department of Applied Mechanics, Government Engineering
    College, Karad-415124, Maharashtra, India
  • Department of Civil Engineering, SRES’s College of Engineering,
    University of Pune, Kopargaon-423601, Maharashtra,
  • [1] Timoshenko S.P., On the Correction for Shear of the DifferentialEquation for Transverse Vibrations of Prismatic Bars, Philos.Mag., 1921, 41, 742–746.
  • [2] Levinson M., A New Rectangular Beam Theory, J. Sound Vib.,1981, 74, 81–87.[Crossref]
  • [3] Levinson M., On Bickford’s Consistent Higher Order Beam Theory,Mech. Res. Commun., 1985, 12, 1–9.
  • [4] Reddy J.N., Mechanics of laminated composite plates andshells: Theory and Analysis, 2nd ed., Boca Raton, FL: CRC Press,2004.
  • [5] Krishna Murty A.V., Toward A Consistent Beam Theory, AIAA J.,1984, 22, 811–816.[Crossref]
  • [6] Ghugal Y.M., Shimpi R.P., A trigonometric shear deformationtheory for flexure and free vibration of isotropic thick beams,Proceedings of Structural Engineering Convention (SEC−2000,IIT Bombay, India) 2000.
  • [7] Soldatos K.P., A Transverse Shear Deformation Theory for HomogeneousMonoclinic Plates, Acta Mech., 1992, 94, 195–200.[Crossref]
  • [8] Karama M., Afaq K.S., Mistou S., Mechanical Behaviour of LaminatedComposite Beam by the New Multi-Layered LaminatedComposite Structures Model with Transverse Shear Stress Continuity,Int. J. Solids Struct., 2003, 40, 1525–1546.[Crossref]
  • [9] Sayyad A.S., Comparison of Various Refined Beam Theories forthe Bending and Free Vibration Analysis of Thick Beams, Appl.Comput. Mech., 2011, 5, 217–230.
  • [10] Sayyad A.S., Ghugal Y.M., Borkar R.R., Flexural Analysis of FibrousComposite Beams under Various Mechanical Loadingsusing Refined Shear Deformation Theories, Compos.: Mech.Comput. App. An Int. J., 2014, 5(1), 1–19.
  • [11] Vo T.P., Thai H.T., Static Behaviour of Composite Beams usingVarious Refined Shear Deformation Theories, Compos. Struct.,2012, 94(8), 2513–2522.
  • [12] Chakrabarti A., Chalak H.D., Iqbal M.A., Sheikh A.H., A New FEModel Based on Higher Order Zigzag Theory for the Analysisof Laminated Sandwich Beam with Soft Core, Compos. Struct.,2011, 93, 271–279.
  • [13] Aguiar R.M., Moleiro F., Soares C.M.M., Assessment of Mixedand Displacement-Based Models for Static Analysis of CompositeBeams of Different Cross-Sections, Compos. Struct., 2012,94, 601–616.
  • [14] Onate E., Eijo A., Oller S., Simple and Accurate Two-NodedBeam Element for Composite Laminated Beams using a RefinedZigzag Theory, Comput. Methods Appl. M., 2012, 213-216, 362–382.[WoS]
  • [15] Tessler A., Di Sciuva M., Gherlone M., A Refined Zigzag BeamTheory for Composite and Sandwich Beams, J. Compos. Mater.,2009, 43, 1051–1081.[Crossref]
  • [16] Carrera E., Giunta G., Refined Beam Theories Based on a UnifiedFormulation, Int. J. Appl. Mech., 2010, 2, 117-43.[Crossref]
  • [17] Carrera E., Giunta G., Nali P., Petrolo M., Refined Beam Elementswith Arbitrary Cross-Section Geometries, Comput. Struct., 2010,88, 283-93.[WoS][Crossref]
  • [18] Wanji C., Zhen W., A New Higher-Order Shear Deformation Theoryand Refined Beam Element of Composite Laminates, ActaMech. Sinica, 2005, 21, 65–69.[Crossref]
  • [19] Kapuria S., Dumir P.C., Jain N.K., Assessment of Zigzag Theoryfor Static Loading, Buckling, Free and Forced Response of Compositeand Sandwich Beams, Compos. Struct., 2004, 64, 317–327.
  • [20] Catapano A., Giunta G., Belouettar S., Carrera E., Static Analysisof Laminated Beams via a Unified Formulation, Compos. Struct.,2011, 94, 75–83.
  • [21] Icardi U., A Three Dimensional Zig-Zag Theory for Analysis ofThick Laminated Beams, Compos. Struct., 2001, 52, 123–135.
  • [22] Subramanian P., Flexural Analysis of Symmetric LaminatedComposite Beams Using C1 Finite Element, Compos. Struct.,2001, 54, 121-126.
  • [23] Reddy J.N., Nonlocal Theories for Bending, Buckling and Vibrationof Beams, Int. J. Eng. Sci., 2007, 45, 288–307.[Crossref][WoS]
  • [24] Goyal V.K., Kapania R.K., A Shear-Deformable Beam Element forthe Analysis of Laminated Composites, Finite Elem. Anal. Des.,2007, 43, 463 – 477.[WoS]
  • [25] Wanji C., Li L., Xu M., A Modified Couple Stress Model for BendingAnalysis of Composite Laminated Beams with First OrderShear Deformation, Compos. Struct., 2011, 93, 2723–2732.
  • [26] Shi G., Voyiadjis G.Z., A Sixth-Order Theory of Shear DeformableBeams with Variational Consistent Boundary Conditions, J.Appl. Mech., 2011, 78, 1 -11.[Crossref][WoS]
  • [27] Tornabene F., Fantuzzi N., Viola E., Carrera E., Static Analysisof Doubly-Curved Anisotropic Shells and Panels using CUFApproach, Differential Geometry and Differential QuadratureMethod, Compos. Struct., 2014, 107, 675 – 697.
  • [28] Pagani A., Carrera E., Banerjee J.R., Cabral P.H., Caprio G.,Prado A., Free Vibration Analysis of Composite Plates by Higher-Order 1D Dynamic Stiffness Elements and Experiments, Compos.Struct., 2014, 118, 654–663.
  • [29] Pagani A., Carrera E., Boscolo M., Banerjee J.R., Refined DynamicStiffness Elements Applied to Free Vibration Analysis ofGenerally Laminated Composite Beamswith Arbitrary BoundaryConditions, Compos. Struct., 2014, 110, 305–316.
  • [30] Viola E., Tornabene F., Fantuzzi N., Static Analysis of CompletelyDoubly-Curved Laminated Shells and Panels using GeneralHigher-Order Shear Deformation Theories, Compos. Struct.,2013, 101, 59–93.
  • [31] Viola E., Rossetti L., Fantuzzi N., Tornabene F., Static Analysis ofFunctionally Graded Conical Shells and Panels using the GeneralizedUnconstrained Third Order Theory Coupled with theStress Recovery, Compos. Struct., 2014, 112, 44–65.
  • [32] Natarajan S., Ferreira A.J.M., Xuan H.N., Analysis of Cross-PlyLaminated Plates using Isogeometric Analysis and Unified Formulation,Curved and Layer. Struct., 2014, 1, 1–10.
  • [33] Mohazzab A.H., Dozio L., Prediction of natural frequencies oflaminated curved panels using refined 2-D theories in the spectralcollocation method, Curved and Layer. Struct., 2015, 2, 1–14.
  • [34] Arya H., Shimpi R.P., Naik N.K., A Zigzag Model for LaminatedComposite Beams, Compos. Struct., 2002, 56, 21–24.
  • [35] Sayyad A.S., Ghugal Y.M., Effect of Transverse Shear and TransverseNormal Strain on Bending Analysis of Cross-Ply LaminatedBeams, Int. J. Appl. Math. Mech., 2011, 7(12), 85-118.
  • [36] Shimpi R.P., Ghugal Y.M., A Layerwise Trigonometric Shear DeformationTheory for Two Layered Cross-Ply Laminated Beams,J. Reinf. Plast. Compos., 1999, 18, 1516–1543.
  • [37] Ghugal Y.M., Shinde S.B., Flexural Analysis of Cross-Ply LaminatedBeams using Layerwise Trigonometric Shear DeformationTheory, Lat. Am. J. Solids Struct., 2013, 10, 675 – 705.[WoS][Crossref]
  • [38] Kant T., Manjunatha B.S., On Accurate Estimation of TransverseStresses in Multilayer Laminates, Comput. Struct. 1994, 50(3),351-365.[Crossref]
  • [39] Pagano N., Exact Solutions for Rectangular Bidirectional Compositesand Sandwich Plates, J. Compos.Mater. 1970, 4, 20–34.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.