Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 2 | 1 |

Tytuł artykułu

Determination of fracture parameters for interface cracks in transverse isotropic magnetoelectroelastic composites

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
To determine fracture parameters of interfacial cracks in transverse isotropic magnetoelectroelastic composites, a displacement extrapolation formula was derived. The matrix-form formula can be applicable for both material components with arbitrary poling directions. The corresponding explicit expression of this formula was obtained for each poling direction normal to the crack plane. This displacement extrapolation formula is only related to the boundary quantities of the extended crack opening displacements across crack faces, which is convenient for numerical applications, especially for BEM. Meantime, an alternative extrapolation formula based on the path-independent J-integral and displacement ratios was presented which may be more adaptable for any domain-based numerical techniques like FEM. A numerical example was presented to show the correctness of these formulae.

Wydawca

Rocznik

Tom

2

Numer

1

Opis fizyczny

Daty

wydano
2015-01-01
otrzymano
2015-01-02
zaakceptowano
2015-01-30
online
2015-03-25

Twórcy

autor
  • Department of Engineering Mechanics, Beijing University of Technology, Beijing 100124, PR China, Tel: ++86-15810850418
autor
  • Department of Engineering Mechanics, Beijing University of Technology, Beijing 100124, PR China
  • Department of Mechanical and Environmental Informatics, Tokyo Institute of Technology, 2-12-1-W8-22, Ookayama, Meguro-ku, Tokyo 152-8552, Japan

Bibliografia

  • [1] Van Suchtelen J., Product properties: a new application of composite materials, Phillips Res. Rep., 1972, 27, 28-37.
  • [2] Nan C.W., Magnetoelectric effect in composite of piezoelectric and piezomagnetic phases, Phys. Rev. B, 1994, 50, 6082-6088.
  • [3] Hadjiloizi D.A., Kalamkarov A.L., Metti Ch., Georgiades A.V., Analysis of smart piezo-magneto-thermo-elastic composite and reinforced plates: Part I-model development, Curved and Layered Structures, 2014, 1, 11-31.
  • [4] Hadjiloizi D.A., Kalamkarov A.L., Metti Ch., Georgiades A.V., Analysis of smart piezo-magneto-thermo-elastic composite and reinforced plates: Part II-applications, Curved and Layered Structures, 2014, 1, 32-58.
  • [5] Ramirez F., Heyliger P.R., Pan E., Free vibration response of two-dimensional magneto-electro-elastic laminated plates, Journal of Sound and Vibration, 2006, 292, 626-644.
  • [6] Razavi S., Shooshtari A., Nonlinear free vibration of magnetoelectro-elastic rectangular plates, Composite Structures, 2015, 119, 377-384.
  • [7] Xin L., Hu Z., Free vibration of simply supported and multilayered magneto-electro-elastic, Composite Structures, 2015, 121, 344-350.
  • [8] Wang B.L., Mai Y.W., Crack tip field in piezoelectric/piezomagnetic media, Eur. J. Mech. A/Solids, 2003, 22, 591-602.
  • [9] Hu K.Q., Li G.Q., Zhong Z., Fracture of a rectangular piezoelectromagnetic body, Mech. Res. Commun., 2006, 33, 482-492.
  • [10] Wang B.L., Mai Y.W., Fracture of piezoelectromagnetic materials, Mech. Res. Commun., 2004, 31, 65-73.
  • [11] Song Z.F., Sih G.C., Crack initiation behavior in magnetoelectroelastic composite under in-plane deformation, Theor. Appl. Frac. Mech., 2003, 39, 189-207.
  • [12] Tian W.Y., Gabbert U., Multiple crack interaction problem in magnetoelectroelastic solids, Eur. J. Mech. A/Solids, 2004, 23, 599-614.[Crossref]
  • [13] Tian W.Y., Rajapakse R.K.N.D., Fracture analysis of magnetoelectroelastic solids by using path independent integrals, Int. J. Fract., 2005, 131, 311-335.
  • [14] Wang B.L., Mai Y.W., Applicability of the crack-face electromagnetic boundary conditions for fracture of magnetoelectroelastic materials, Int. J. Solids Struct., 2007, 44, 387-398.[WoS]
  • [15] Niraula O.P., Wang B.L., A magneto-electro-elastic material with a penny-shaped crack subjected to temperature loading, Acta Mech., 2006, 187, 151-168.
  • [16] Zhao M.H., Yang F., Liu T., Analysis of a penny-shaped crack in a magneto-electro-elastic medium, Philos. Mag., 2006, 86, 4397-4416.
  • [17] Li R., Kardomateas G.A., The mode III interface crack in piezoelectro-magneto-elastic dissimilar bimaterials, J. Appl. Mech., 2006, 73, 220-227.
  • [18] Rogowski B., Exact solution for an anti-plane interface crack between two dissimilar magneto-electro-elastic half-spaces, Smart Mater. Research, 2012, 78, 6190.
  • [19] Su R.K.L., Feng W.J., Fracture behavior of a bonded magnetoelectro-elastic rectangular plate with an interface crack, Arch. Appl. Mech., 2008, 78, 343-362.[WoS]
  • [20] Wang B.L., Mai Y.W., Closed-form solution for an antiplane interface crack between two dissimilar magnetoelectroelastic layers, J. Appl. Mech., 2006, 73, 281-290.
  • [21] Feng W.J., Li Y.S., Xu Z.H., Transient response of an interfacial crack between dissimilar magnetoelectroelastic layers under magnetoelectromechanical impact loadings, Mode-I problem, Int. J. Solids Struct., 2009, 46, 3346-3356.[WoS]
  • [22] Wang B.L., Mai Y.W., Self-consistent analysis of coupled magnetoelectroelastic fracture. Theoretical investigation and finite element verification, Comput. Methods Appl. Mech. Engrg., 2007, 196, 2044-2054.[WoS]
  • [23] Rojas-Díaz R., Sukumar N., Sáez A., García-Sánchez F., Fracture in magnetoelectroelastic materials using the extended finite element method, Int. J. Numer. Meth. Engng., 2011, 88, 1238-1259.[WoS]
  • [24] Sladek J., Sladek V., Solek P., Pan E., Fracture analysis of cracks in magneto-electro-elastic solids by the MLPG, Comput. Mech., 2008, 42, 697-714.[WoS]
  • [25] Garcia-Sanchez F., Rojas-Diaz R., Saez A., Zhang Ch., Fracture of magnetoelectroelastic composite materials using boundary element method (BEM), Theor. Appl. Fract. Mech., 2007, 47, 192-204.
  • [26] Wünsche M., Sáez A., García-Sánchez F., Zhang Ch., Transient dynamic crack analysis in linear magnetoelectroelastic solids by a hypersingular time-domain BEM, Eur. J. Mech. A/Solids, 2012, 32, 118-130.[WoS]
  • [27] Huang G.Y., Wang B.L., Mai Y.W., Effect of Interfacial Cracks on the Effective Properties of Magnetoelectroelastic Composites. J. Intel. Mat. Syst. Str., 2009, 20, 963-968.[Crossref]
  • [28] Lei, J., Garcia-Sanchez F., Zhang Ch., Determination of dynamic intensity factors and time-domain BEM for interfacial cracks in anisotropic piezoelectric materials, Int. J. Solids Struct., 2013, 50, 1482-1493.[WoS]
  • [29] Lei J., Zhang Ch., On the generalized Barnett-Lothe tensors for anisotropic magnetoelectroelastic materials, Eur. J. Mech. A/Solids, 2014, 46, 12-21.[WoS]
  • [30] Bui Q.T., Zhang Ch., Analysis of generalized dynamic intensity factors in cracked magneto-electroelastic solids by the XFEM, Finite Elem. Anal. Des., 2013, 69, 19-36.
  • [31] Li Y., Viola E., Size effect investigation of a central interface crack between two bonded dissimilar materials, Composite Structures, 2013, 105, 90-107.
  • [32] Viola E., Tornabene F., Ferretti E., Fantuzzi N., GDQFEM numerical simulations of continuous media with cracks and discontinuities. CMES-Comp. Model. Eng., 2013, 94(4), 331-369.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_1515_cls-2015-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.