Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 2 | 1 |

Tytuł artykułu

The Algebraic Formulation: Why and How to Use it


Treść / Zawartość

Warianty tytułu

Języki publikacji



Finite Element, Boundary Element, Finite Volume, and Finite Difference Analysis are all commonly used in nearly all engineering disciplines to simplify complex problems of geometry and change, but they all tend to oversimplify. This paper shows a more recent computational approach developed initially for problems in solid mechanics and electro-magnetic field analysis. It is an algebraic approach, and it offers a more accurate representation of geometric and topological features.

Słowa kluczowe







Opis fizyczny




  • Department of Civil, Chemical, Environmental and Materials Engineering - DICAM, University of Bologna, Viale del Risorgimento 2, 40136, Bologna, Italy, Tel.: +39 051 2093493


  • [1] Newton I., Philosophiae Naturalis Principia Mathematica, 1687.
  • [2] Ferretti E., The Cell Method as a Case of Bialgebra, Mathematics and Computers in Science and Engineering Series Nº 34 - Recent Advances in Applied Mathematics, Modelling and Simulation: Proceedings of the 8th International Conference on Applied Mathematics, Simulation, Modelling (ASM ‘14), WSEAS Press, Athens (Greece), 322-331, 2014.
  • [3] Ferretti E., Similarities between Cell Method and Non-Standard Calculus, Mathematics and Computers in Science and Engineering Series Nº 39 - Recent Advances in Computational Mathematics: Proceedings of the 3rd International Conference on Applied and Computational Mathematics (ICACM ’14), WSEAS Press, Athens (Greece), 110-115, 2014.
  • [4] Bellina F., Bettini P., Tonti E., Trevisan F., Finite Formulation for the Solution of a 2D Eddy-Current Problem, IEEE Transaction on Magnetics, 2002, 38(2), 561-564.
  • [5] Ferretti E., Modellazione del Comportamento del Cilindro Fasciato in Compressione, Ph.D. Thesis (in Italian), University of Lecce, Lecce (Italy), 2001.
  • [6] Ferretti E., Crack Propagation Modeling by Remeshing using the Cell Method (CM), CMES: Comput. Model. Eng. Sci., 2003, 4(1), 51-72.
  • [7] Ferretti E., Crack-Path Analysis for Brittle and Non-Brittle Cracks: A Cell Method Approach, CMES: Comput. Model. Eng. Sci., 2004, 6(3), 227-244.
  • [8] Ferretti E., A Cell Method (CM) Code for Modeling the Pullout Test Step-Wise, CMES: Comput. Model. Eng. Sci., 2004, 6(5), 453-476.
  • [9] Ferretti E., A Discrete Nonlocal Formulation using Local Constitutive Laws, Int. J. Fracture, 2004, 130(3), L175-L182.[Crossref]
  • [10] Ferretti E., Modeling of the Pullout Test through the Cell Method, In G. C. Sih, L. Nobile, RRRTEA - International Conference of Restoration, Recycling and Rejuvenation Technology for Engineering and Architecture Application, Aracne, 180–192, 2004.
  • [11] Ferretti E., A Local Strictly Nondecreasing Material Law for Modeling Softening and Size-Effect: A Discrete Approach, CMES: Comput. Model. Eng. Sci., 2005, 9(1), 19-48.
  • [12] Ferretti E., On nonlocality and locality: Differential and discrete formulations, 11th International Conference on Fracture - ICF11, 2005, 3, 1728-1733.
  • [13] Ferretti E., Cell Method Analysis of Crack Propagation in Tensioned Concrete Plates, CMES: Comput. Model. Eng. Sci., 2009, 54(3), 253-282.
  • [14] Ferretti E., The Cell Method: An Enriched Description of Physics Starting from the Algebraic Formulation, CMC: Comput. Mater. Con., 2013, 36(1), 49-72.
  • [15] Ferretti E., A Cell Method Stress Analysis in Thin Floor Tiles Subjected to Temperature Variation, CMC: Comput. Mater. Con., 2013, 36(3), 293-322.
  • [16] Ferretti E., The Cell Method: A Purely Algebraic Computational Method in Physics and Engineering. Momentum Press, New York, 2014.
  • [17] Ferretti E., The Assembly Process for Enforcing Equilibriumand Compatibilitywith the CM: a Coboundary Process, CMES: Comput. Model. Eng. Sci., (in press).
  • [18] Ferretti E., The Mathematical Foundations of the Cell Method, International Journal of Mathematical Models and Methods in Applied Sciences, (submitted).
  • [19] Ferretti E., Some new Findings on the Mathematical Structure of the Cell Method, International Journal of Mathematical Models and Methods in Applied Sciences, (submitted).
  • [20] Ferretti E., The Cell Method: An Overview on the Main Features, Curved and Layer. Struct., 2015, 2, 194-243.
  • [21] Ferretti E., Casadio E., Di Leo A., Masonry Walls under Shear Test: A CM Modeling, CMES: Comput. Model. Eng. Sci., 2008, 30(3), 163-190.
  • [22] Ferretti E., Di Leo A., Modelling of Compressive Tests on FRP Wrapped Concrete Cylinders through a Novel Triaxial Concrete Constitutive Law, SITA: Scientific Israel – Technological Advantages, 2003, 5, 20-43.
  • [23] Ferretti E., Di Leo A., Viola E., Computational Aspects and Numerical Simulations in the Elastic Constants Identification, CISM Courses and Lectures Nº 471 - Problems in Structural Identification and Diagnostic: General Aspects and Applications, Springer, Wien – New York, 133–147, 2003.
  • [24] Freschi F., Giaccone L., Repetto M., Educational value of the algebraic numerical methods in electromagnetism, COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2008, 27(6), 1343-1357.
  • [25] Marrone M., Rodrìguez-Esquerre V.F., Hernàndez-Figueroa H.E., Novel Numerical Method for the Analysis of 2D Photonic Crystals: the Cell Method, Opt. Express, 2002, 10(22), 1299-1304.[Crossref]
  • [26] Matoušek J., Lectures in Discrete Geometry, Graduate Texts in Mathematics 212, Springer, 2002.
  • [27] Mattiussi C., An Analysis of Finite Volume, Finite Element, and Finite Difference Methods using some Concepts from Algebraic Topology, J. Comput. Phys., 1997, 133, 289-309.
  • [28] Mattiussi C., The Finite Volume, Finite Difference, and Finite Elements Methods as Numerical Methods for Physical Field Problems, In: P. Hawkes (Ed.), Advances in Imaging and Electron Physics, 113, 1-146, 2000.
  • [29] Nappi A., Rajgelj S., Zaccaria D., Application of the Cell Method to the Elastic-Plastic Analysis, Proc. Plasticity ‘97, 1997, 14-18.
  • [30] Nappi A., Rajgelj S., Zaccaria D., A Discrete Formulation Applied to Crack Growth Problem, In: G. G. Sih (Ed.), Mesomechanics 2000, Tsinghua University Press, Beijing, P. R. China, 395-406, 2000.
  • [31] Nappi A., Tin-Loi F., A discrete formulation for the numerical analysis of masonry structures, In: Wang C.M., Lee K.H., Ang K.K. (Eds.), Computational Mechanics for the Next Millennium, Elsevier, Singapore, 81-86, 1999.
  • [32] Nappi A., Tin-Loi F., A Numerical Model for Masonry Implemented in the Framework of a Discrete Formulation, Struct. Eng. Mech., 2001, 11(2), 171-184.
  • [33] Pani M., Taddei F., The Cell Method: Quadratic Interpolation with Tetraedra for 3D Scalar Fields, CMES: Comput. Model. Eng. Sci., 2013, 94(4), 279-300.
  • [34] Tonti E., On the Mathematical Structure of a Large Class of Physical Theories, Rend. Acc. Lincei, 1972, 52, 48-56.
  • [35] Tonti E., The Algebraic - Topological Structure of Physical Theories, Conference on Symmetry, Similarity and Group Theoretic Methods in Mechanics, Calgary (Canada), 1974, 441-467.
  • [36] Tonti E., On the formal structure of physical theories, Monograph of the Italian National Research Council, 1975.
  • [37] Tonti E., The Reason for Analogies between Physical Theories, Appl. Math. Modelling, 1976, 1, 37-50.
  • [38] Tonti E., On the Geometrical Structure of the Electromagnetism, In: G. Ferrarese (Ed.), Gravitation, Electromagnetism and Geometrical Structures, for the 80th birthday of A. Lichnerowicz, Pitagora, Bologna, 281-308, 1995.
  • [39] Tonti E., Algebraic Topology and Computational Electromagnetism, Fourth International Worksop on the Electric and Magnetic Field: from Numerical Models to industrial Applications, Marseille, 1998, 284-294.
  • [40] Tonti E., A Direct Discrete Formulation of Field Laws: the Cell Method, CMES: Comput. Model. Eng. Sci., 2001, 2(2), 237-258.
  • [41] Tonti E., A Direct Discrete Formulation for the Wave Equation, J. Comput. Acoust., 2001, 9(4), 1355-1382.[Crossref]
  • [42] Tonti E., Finite Formulation of the Electromagnetic Field, Progress in Electromagnetics Research, PIER 32 (Special Volume on Geometrical Methods for Comp. Electromagnetics), 2001, 1-44.[Crossref]
  • [43] Tonti E., Finite Formulation of the Electromagnetic Field, International COMPUMAG Society Newsletter, 2001, 8(1), 5-11.
  • [44] Tonti E., Finite Formulation of the Electromagnetic Field, IEE Transactions on Magnetics, 2002, 38(2), 333-336.
  • [45] Tonti E., The Mathematical Structure of Classical and Relativistic Physics, Birkhäuser, 2013.
  • [46] Tonti E., Zarantonello F., Algebraic Formulation of Elastostatics: the Cell Method, CMES: Comput. Model. Eng. Sci., 2009, 39(3), 201-236.
  • [47] Tonti E., Zarantonello F., Algebraic Formulation of Elastodynamics: the Cell Method, CMES: Comput. Model. Eng. Sci., 2010, 64(1), 37-70.
  • [48] Viola E., Tornabene F., Ferretti E., Fantuzzi N., Soft Core Plane State Structures Under Static Loads Using GDQFEM and Cell Method, CMES: Comput. Model. Eng. Sci., 2013, 94(4), 301-329.
  • [49] Viola E., Tornabene F., Ferretti E., Fantuzzi N., GDQFEM Numerical Simulations of Continuous Mediawith Cracks and Discontinuities, CMES: Comput. Model. Eng. Sci., 2013, 94(4), 331-369.
  • [50] Viola E., Tornabene F., Ferretti E., Fantuzzi N., On Static Analysis of Composite Plane State Structures via GDQFEM and Cell Method, CMES: Comput. Model. Eng. Sci., 2013, 94(5), 421-458.
  • [51] Bott R., Tu L.W., Differential Forms in Algebraic Topology, Springer-Verlag, Berlin, New York, 1982.
  • [52] Grothendieck A., Topological vector spaces, Gordon and Breach Science Publishers, New York, 1973.
  • [53] Köthe G., Topological vector spaces, Grundlehren der mathematischen Wissenschaften 159, Springer-Verlag, New York, 1969.
  • [54] McNulty G.F., Shallon C.R., Inherently nonfinitely based finite algebras, Universal algebra and lattice theory (Puebla, 1982), Lecture Notes in Math. 1004, Springer-Verlag, Berlin, New York, 206-231, 1983.
  • [55] Robertson A.P., Robertson W.J., Topological vector spaces, Cambridge Tracts in Mathematics 53, Cambridge University Press, 1964.
  • [56] Schaefer H.H., Topological vector spaces, GTM 3, Springer-Verlag, New York, 1971.
  • [57] Trèves F., Topological Vector Spaces, Distributions, and Kernels, Academic Press, 1967.
  • [58] Ayres F., Mandelson E., Calculus (Schaum's Outlines Series), 5th ed., Mc Graw Hill, 2009.
  • [59] Barut A.O., Electrodynamics and Classical Theory of Fields and Particles, Courier Dover Publications, 1964.
  • [60] Bishop R., Goldberg S.I., Tensor analysis on manifolds, Courier Dover Publications, 1980.
  • [61] Bryant R.L., Chern S.S., Gardner R.B., Goldschmidt H.L., Griffiths P.A., Exterior differential systems, Springer-Verlag, 1991.
  • [62] Fenner R.T., Finite Element Methods for Engineers, Imperial College Press, London, 1996.
  • [63] Flanders H., Differential forms with applications to the physical sciences, Dover Publications, 1989.
  • [64] Fleming W., Functions of Several Variables, 3rd ed., Springer-Verlag, New York, 1987.
  • [65] Hairer E., Lubich C., Wanner G., Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd ed., Springer Series in Computational Mathematics 31, Springer-Verlag, Berlin, New York, 2006.
  • [66] Huebner K.H., The Finite Element Method for Engineers, Wiley, 1975.
  • [67] Lam T.Y., Introduction to Quadratic Forms over Fields, Graduate Studies in Mathematics 67, 2005.
  • [68] Lang S., Differential manifolds, Reading, Mass.–London–Don Mills, Ont., Addison-Wesley Publishing Co., Inc., 1972.
  • [69] Larson R., Hosteler R.P., Edwards B.H., Calculus, 8th ed., Houghton Mifflin, 2005.
  • [70] Latorre D.R., Kenelly J.W., Reed I.B., Biggers S., Calculus Concepts: An Applied Approach to the Mathematics of Change, Cengage Learning, 2007.
  • [71] Livesley R.K., Finite Elements, an Introduction for Engineers, Cambridge University Press, 1983.
  • [72] Lovelock D., Hanno R., Tensors, Differential Forms, and Variational Principles, Dover Publications, 1989 [1975].
  • [73] Okada S., Onodera R., Algebraification of Field Laws of Physics by Poincaré Process, Bull. of Yamagata University – Natural Sciences, 1951, 1(4), 79-86.
  • [74] Rudin W., Functional Analysis, McGraw-Hill Science/Engineering/Math, 1991.
  • [75] Schouten J.A., Tensor Calculus for Physicists, Clarendon Press, Oxford, 1951.
  • [76] Truesdell C., Noll W., The non-linear field theories of mechanics: Third edition, Springer, 2004.
  • [77] Veblen O., Whitehead J.H.C., The Foundations of Differential Geometry, Cambr. Tracts, no. 29, 1932.
  • [78] Zill D.G., Wright S., Wright W.S., Calculus: Early Transcendentals, 3rd ed., Jones & Bartlett Learning, 2009.
  • [79] Artin M., Algebra, Prentice Hall, 1991.
  • [80] Bourbaki N., Algebra, Springer-Verlag, Berlin, New York, 1988.
  • [81] Bourbaki N., Elements of mathematics, Algebra I, Springer-Verlag, 1989.
  • [82] Curtis C.W., Linear Algebra, Allyn & Bacon, Boston, 1968.
  • [83] Dummit D.S., Foote R.M., Abstract Algebra, 3rd ed., Wiley, 2003.
  • [84] Frescura F.A.M., Hiley B.J., The implicate order, algebras, and the spinor, Foundations of Physics, 1980, 10(1-2), 7-31.
  • [85] Frescura F.A.M., Hiley B.J., Algebras, quantum theory and prespace, Revista Brasileira de Fisica, Volume Especial, Los 70 anos de Mario Schonberg, 1984, 49-86.
  • [86] Hazewinkel M., Contravariant tensor, Encyclopedia of Mathematics, Springer, ed. 2001.
  • [87] Hazewinkel, M., Covariant tensor, Encyclopedia of Mathematics, Springer, ed. 2001.
  • [88] Herstein I.N., Abstract Algebra, 3rd ed., Wiley, 1996.
  • [89] Hestenes D., Space-time Algebra, Gordon and Breach, New York, 1966.
  • [90] Lang S., Linear algebra, Springer-Verlag, Berlin, New York, 1987.
  • [91] Lang S., Algebra, Graduate Texts in Mathematics 211, revised 3rd ed., Springer-Verlag, New York, 2002.
  • [92] Lax P., Linear algebra, Wiley-Interscience, 1996.
  • [93] Mac Lane S., Birkhoff G, Algebra, AMS Chelsea, 1999.
  • [94] Oates-Williams S., On the variety generated by Murskiĭ's algebra, Algebra Universalis, 1984, 18(2), 175-177.
  • [95] Roman S., Advanced Linear Algebra, Graduate Texts in Mathematics 135, 2nd ed., Springer-Verlag, Berlin, New York, 2005.
  • [96] Wilder R.L., Introduction to Foundations of Mathematics, John Wiley and Sons, 1965.
  • [97] Baylis W.E., Clifford (Geometric) Algebra with Applications to Physics, Mathematics, and Engineering, Birkhäuser, 1996.
  • [98] Baylis W.E., Electrodynamics: A Modern Geometric Approach, 2nd ed., Birkhäuser, 2002.
  • [99] Bohm D., Hiley B.J., Stuart A., On a New Mode of Description in Physics, Int. J. Theor. Phys. 1970, 3(3), 171-183.[Crossref]
  • [100] Doran C., Lasenby A., Geometric algebra for physicists, University Press, Cambridge 2003.
  • [101] Dorst L., The inner products of geometric algebra, MA: Birkhäuser Boston, Boston, 2002.
  • [102] Dorst L., Fontijne D., Mann S., Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry, Elsevier/Morgan Kaufmann, Amsterdam, 2007.
  • [103] Frescura F.A.M., Hiley B.J., Geometric interpretation of the Pauli spinor, American Journal of Physics, 1981, 49(2), 152.
  • [104] Hestenes D., New foundations for classical mechanics: Fundamental Theories of Physics, 2nd ed., Springer, 1999.
  • [105] Jost, J., Riemannian Geometry and Geometric Analysis, Springer-Verlag, Berlin, 2002.
  • [106] Lasenby J., Lasenby A.N., Doran C.J.L., A Unified Mathematical Language for Physics and Engineering in the 21st Century, Philosophical Transactions of the Royal Society of London, 2000, A 358, 1-18.
  • [107] Lounesto P., Clifford algebras and spinors, Cambridge University Press, Cambridge, 2001.
  • [108] Macdonald A., Linear and Geometric Algebra, CreateSpace, Charleston, 2011.
  • [109] Micali A., Boudet R., Helmstetter J., Clifford Algebras and their Applications in Mathematical Physics, Workshop Proceedings: 2nd (Fundamental Theories of Physics), Kluwer, 1989.
  • [110] Porteous I.R., Clifford algebras and the classical groups, Cambridge University Press, Cambridge, 1995.
  • [111] Schutz B., Geometrical methods of mathematical physics, Cambridge University Press, 1980.
  • [112] Snygg J., A New Approach to Differential Geometry Using Clifford's Geometric Algebra, Birkhäuser, 2012.
  • [113] van Dantzing D., On the Relation Between Geometry and Physics and the Concept of Space-Time, Helv. Phys. Acta, 1956, Suppl. IV, 48-53.
  • [114] Branin F.H.Jr., The Algebraic Topological Basis for Network Analogies and the Vector Calculus, Proc. Symp. on Generalized Networks, Brooklyn Polit., 1966, 453-487.
  • [115] Frescura F.A.M., Hiley B.J., The algebraization of quantum mechanics and the implicate order, Foundations of Physics, 1980, 10(9-10), 705-722.
  • [116] Twiss R.J., Moores E.M., §2.1 The orientation of structures, In: Structural geology, 2nd ed., Macmillan, 1992.
  • [117] Morton K.W., Stringer S.M., Finite Volume Methods for Inviscid and Viscous Flows, Steady and Unsteady, Lecture, Series 1995-02, Computational Fluid Dynamics, Von Karman Institute of Fluid Dynamics, 1995.
  • [118] Burke W.L., Applied Differential Geometry, Cambridge University Press, Cambridge, 1985.
  • [119] Sternberg S., Lectures on Differential Geometry, Prentice Hall, 1964.
  • [120] Gardner J.W., Wiegandt R., Radical Theory of Rings, Chapman & Hall/CRC Pure and Applied Mathematics, 2003.
  • [121] Halmos P., Finite dimensional vector spaces, Springer, 1974.
  • [122] Coxeter H.S.M., Regular Polytopes, Dover Publications, Inc., New York, 1973.
  • [123] Gosset T., On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900.
  • [124] Grünbaum B., Convex Polytopes, Graduate Texts in Mathematics 221, 2nd ed., Springer, 2003.
  • [125] Hilbert D., Grundlagen der Geometrie, 10th ed., Teubner, Stuttgart, 1968.
  • [126] Johnson N.W., The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966.
  • [127] Ziegler G.M., Lectures on Polytopes, Graduate Texts in Mathematics 152, Springer, 1995.
  • [128] Cromwell P.R., Polyhedra, Cambridge University Press, 1999.
  • [129] Davey B.A., Idziak P.M., Lampe W.A., McNulty G.F., Dualizability and graph algebras, Discrete Mathematics, 2000, 214(1), 145-172.
  • [130] Delić D., Finite bases for flat graph algebras, Journal of Algebra, 2001, 246(1), 453-469.
  • [131] Kelarev A.V., Graph Algebras and Automata, Marcel Dekker, New York, 2003.
  • [132] Kelarev A.V., Miller M., Sokratova O.V., Languages recognized by two-sided automata of graphs, Proc. Estonian Akademy of Science, 2005, 54(1), 46-54.
  • [133] Kelarev A.V., Sokratova O.V., Directed graphs and syntactic algebras of tree languages, J. Automata, Languages & Combinatorics, 2001, 6(3), 305-311.
  • [134] Kelarev A.V., Sokratova O.V., On congruences of automata defined by directed graphs, Theoretical Computer Science, 2003, 301(1-3), 31-43.
  • [135] Kiss E.W., Pöschel R., Pröhle P., Subvarieties of varieties generated by graph algebras, Acta Sci. Math. (Szeged), 1990, 54(1-2), 57-75.
  • [136] Lee S.-M., Graph algebras which admit only discrete topologies, Congr. Numer., 1988, 64, 147-156.
  • [137] Lee S.-M., Simple graph algebras and simple rings, Southeast Asian Bull. Math., 1991, 15(2), 117-121.
  • [138] Pöschel R., The equational logic for graph algebras, Z. Math. Logik Grundlag. Math., 1989, 35(3), 273-282.
  • [139] Bain J., Spacetime structuralism: §5 Manifolds vs. geometric algebra, In: Dennis Dieks, The ontology of spacetime, Elsevier, 2006.
  • [140] Catoni F., Boccaletti D., Cannata R., Mathematics of Minkowski Space, Birkhäuser Verlag, Basel, 2008.
  • [141] Naber G.L., The Geometry of Minkowski Spacetime, Springer-Verlag, New York, 1992.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.