Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 2 | 1 |

Tytuł artykułu

Vibration analysis of multi-stepped and multi-damaged parabolic arches using GDQ

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This paper investigates the in-plane free vibrations of multi-stepped and multi-damaged parabolic arches, for various boundary conditions. The axial extension, transverse shear deformation and rotatory inertia effects are taken into account. The constitutive equations relating the stress resultants to the corresponding deformation components refer to an isotropic and linear elastic material. Starting from the kinematic hypothesis for the in-plane displacement of the shear-deformable arch, the equations of motion are deduced by using Hamilton’s principle. Natural frequencies and mode shapes are computed using the Generalized Differential Quadrature (GDQ) method. The variable radius of curvature along the axis of the parabolic arch requires, compared to the circular arch, a more complex formulation and numerical implementation of the motion equations as well as the external and internal boundary conditions. Each damage is modelled as a combination of one rotational and two translational elastic springs. A parametric study is performed to illustrate the influence of the damage parameters on the natural frequencies of parabolic arches for different boundary conditions and cross-sections with localizeddamage.Results for the circular arch, derived from the proposed parabolic model with the derivatives of some parameters set to zero, agree well with those published over the past years.

Wydawca

Rocznik

Tom

2

Numer

1

Opis fizyczny

Daty

otrzymano
2014-09-25
zaakceptowano
2014-11-18
online
2014-12-18

Twórcy

autor
  • Department of Civil,
    Chemical, Environmental and Materials Engineering - DICAM, University
    of Bologna, Viale del Risorgimento 2, 40136, Bologna, Italy
  • Department of Civil,
    Chemical, Environmental and Materials Engineering - DICAM, University
    of Bologna, Viale del Risorgimento 2, 40136, Bologna, Italy
  • Department of Civil,
    Chemical, Environmental and Materials Engineering - DICAM, University
    of Bologna, Viale del Risorgimento 2, 40136, Bologna, Italy
  • Department of Civil,
    Chemical, Environmental and Materials Engineering - DICAM, University
    of Bologna, Viale del Risorgimento 2, 40136, Bologna, Italy

Bibliografia

  • [1] G. Karami, P. Malekzadeh, In-plane free vibration analysis of circular arches with varying cross-sections using differential quadrature method, Journal of Sound and Vibration 274 (3–5) (2004) 777 – 799.
  • [2] J.-S.Wu, L.-K. Chiang, A new approach for free vibration analysis of arches with effects of shear deformation and rotary inertia considered, Journal of Sound and Vibration 277 (1–2) (2004) 49 – 71.
  • [3] E. Viola, E. Artioli, M. Dilena, Analytical and differential quadrature results for vibration analysis of damaged circular arches, Journal of Sound and Vibration 288 (4–5) (2005) 887 – 906.
  • [4] M. N. Cerri, G. C. Ruta, Detection of localised damage in plane circular arches by frequency data, Journal of Sound and Vibration 270 (1–2) (2004) 39 – 59.
  • [5] M.-S. Marefat, E. Ghahremani-Gargary, S. Ataei, Load test of a plain concrete arch railway bridge of 20-m span, Construction and Building Materials 18 (9) (2004) 661 – 667.
  • [6] K.-H. Ng, C. A. Fairfield, Modifying the mechanism method of masonry arch bridge analysis, Construction and Building Materials 18 (2) (2004) 91 – 97.
  • [7] M. N. Cerri, M. Dilena, G. C. Ruta, Vibration and damage detection in undamaged and cracked circular arches: Experimental and analytical results, Journal of Sound and Vibration 314 (1–2) (2008) 83 – 94.
  • [8] G. de Felice, Assessment of the load-carrying capacity of multispan masonry arch bridges using fibre beam elements, Engineering Structures 31 (8) (2009) 1634 – 1647.
  • [9] K. M. Ahmed, Free vibration of curved sandwich beams by the method of finite elements, Journal of Sound and Vibration 18 (1) (1971) 61 – 74. [Crossref]
  • [10] D. G. Ashwell, A. B. Sabir, T. M. Roberts, Further studies in the application of curved finite elements to circular arches, International Journal of Mechanical Sciences 13 (6) (1971) 507 – 517.
  • [11] M. Petyt, C. C. Fleischer, Free vibration of a curved beam, Journal of Sound and Vibration 18 (1) (1971) 17 – 30. [Crossref]
  • [12] D. J. Dawe, Curved finite elements for the analysis of shallowand deep arches, Computers and Structures 4 (3) (1974) 559 – 580.
  • [13] D. J. Dawe, Numerical studies using circular arch finite elements, Computers and Structures 4 (4) (1974) 729 – 740.
  • [14] G. Prathap, The curved beam/deep arch/finite ring element revisited, International Journal for Numerical Methods in Engineering 21 (3) (1985) 389–407.
  • [15] J. K. Choi, J. K. Lim, General curved beam elements based on the assumed strain fields, Computers and Structures 55 (3) (1995) 379 – 386.
  • [16] E. Viola, E. Artioli, The g.d.q. method for the harmonic dynamic analysis of rotational shell structural elements, Structural Engineering and Mechanics 17 (6) (2004) 789–817.
  • [17] E. Artioli, P. L. Gould, E. Viola, A differential quadrature method solution for shear deformable shells of revolution, Engineering Structures 27 (2005) 1879–1892. [Crossref]
  • [18] E. Artioli, E. Viola, Static analysis of shear-deformable shells of revolution via g.d.q. method, Structural Engineering and Mechanics 19 (4) (2005) 459–475.
  • [19] F. Tornabene, N. Fantuzzi, F. Ubertini, E. Viola, Strong formulation finite element method based on differential quadrature: a survey, Applied Mechanics Reviews doi:10.1115/1.4028859, In Press. [Crossref]
  • [20] A. Pau, A. Greco, F. Vestroni, Numerical and experimental detection of concentrated damage in a parabolic arch by measured frequency variations, Journal of Vibration and Control 17 (4) (2010) 605–614. [Crossref]
  • [21] E. Viola, M. Dilena, F. Tornabene, Analytical and numerical results for vibration analysis of multi-stepped and multi-damaged circular arches, Journal of Sound and Vibration 299 (1-2) (2007) 143 – 163.
  • [22] B. D. Reddy, M. B. Volpi, Mixed finite element methods for the circular arch problem, Computer Methods in Applied Mechanics and Engineering 97 (1) (1992) 125 – 145. [Crossref]
  • [23] P. Ricci, E. Viola, Stress intensity factors for cracked t-sections and dynamic behaviour of t-beams, Engineering Fracture Mechanics 73 (1) (2006) 91 – 111.
  • [24] R. Bellman, J. Casti, Differential quadrature and long-term integration, Journal of Mathematical Analysis and Applications 34 (2) (1971) 235 – 238. [Crossref]
  • [25] R. Bellman, B. G. Kashef, J. Casti, Differential quadrature: A technique for the rapid solution of nonlinear partial differential equations, Journal of Computational Physics 10 (1) (1972) 40 – 52. [Crossref]
  • [26] F. Civan, C. M. Sliepcevich, Differential quadrature for multidimensional problems, Journal of Mathematical Analysis and Applications 101 (2) (1984) 423 – 443. [Crossref]
  • [27] K. J. Kang, C. W. Bert, A. G. Striz, Vibration analysis of shear deformable circular arches by the differential quadrature method, Journal of Sound and Vibration 181 (2) (1995) 353 – 360.
  • [28] C. W. Bert, M. Malik, Differential quadrature method in computational mechanics: A review, Applied Mechanics Reviews 49 (1) (1996) 1–28.
  • [29] K. J. Kang, C.W. Bert, A. G. Striz, Vibration and buckling analysis of circular arches using dqm, Computers and Structures 60 (1) (1996) 49 – 57.
  • [30] C.-N. Chen, A generalized differential quadrature element method, Computer Methods in Applied Mechanics and Engineering 188 (1–3) (2000) 553 – 566.
  • [31] G. R. Liu, T. Y. Wu, In-plane vibration analyses of circular arches by the generalized differential quadrature rule, International Journal of Mechanical Sciences 43 (11) (2001) 2597 – 2611.
  • [32] T. Y. Wu, G. R. Liu, Y. Y. Wang, Application of the generalized differential quadrature rule to initial-boundary-value problems, Journal of Sound and Vibration 264 (4) (2003) 883 – 891.
  • [33] C. Shu, Differential quadrature and its application in engineering, Springer, 2000.
  • [34] E. Viola, F. Tornabene, Vibration analysis of conical shell structures using GDQ method, Far East Journal of Applied Mathematics 25 (1) (2006) 23–39.
  • [35] A. Marzani, F. Tornabene, E. Viola, Nonconservative stability problems via generalized differential quadrature method, Journal of Sound and Vibration 315 (1-2) (2008) 176–196.
  • [36] F. Tornabene, E. Viola, Free vibration analysis of functionally graded panels and shells of revolution, Meccanica 44 (3) (2009) 255–281. [Crossref]
  • [37] E. Viola, F. Tornabene, Free vibrations of three parameter functionally graded parabolic panels of revolution, Mechanics Research Communications 36 (5) (2009) 587–594. [Crossref]
  • [38] E. Viola, F. Tornabene, N. Fantuzzi, Generalized differential quadrature finite element method for cracked composite structures of arbitrary shape, Composite Structures 106 (1) (2013) 815–834. [Crossref]
  • [39] E. Viola, F. Tornabene, E. Ferretti, N. Fantuzzi, On static analysis of composite plane state structures via GDQFEM and cell method, CMES 94 (5) (2013) 421–458.
  • [40] N. Fantuzzi, F. Tornabene, E. Viola, A. J. M. Ferreira, A strong formulation finite element method (sfem) based on RBF and GDQ techniques for the static and dynamic analyses of laminated plates of arbitrary shape, Meccanica 49 (1) (2014) 2503–2542. [Crossref]
  • [41] M. Kisa, Vibration and stability of axially loaded cracked beams, Structural Engineering and Mechanics 44 (2012) 305–323.
  • [42] M. Kisa, J. A. Brandom, Free vibration analysis of multiply openedge cracked beams by component mode synthesis, Structural Engineering and Mechanics 10 (2000) 81–92.
  • [43] N. Fallah, M. Mousavi, An inverse approach for the calculation of flexibility coeflcient of open-side cracks in beam type structures, Structural Engineering and Mechanics 41 (2012) 285–297.
  • [44] H. R. Öz, In-plane vibration of cracked slightly curved beams, Structural Engineering and Mechanics 36 (2010) 679–695.
  • [45] E. Viola, A. Marzani, Crack effect on dynamic stability of beams under conservative and nonconservative forces, Engineering Fracture Mechanics 71 (2004) 699–718.
  • [46] A.Marzani, E. Viola, Effect of boundary conditions on the stability of beams under conservative and non-conservative forces, Structural Engineering and Mechanics 16 (2003) 195–217.
  • [47] Z. Cao, Y. Liu, A new numerical modelling for evaluating the stress intensity factors in 3-d fracture, Structural Engineering and Mechanics 43 (2012) 321–336.
  • [48] M. R. Ayatollahi, R. Hashemi, H. Rokhi, New formulation for vibration analysis of timoshenko beam with double-sided cracks, Structural Engineering and Mechanics 34 (2010) 475–490.
  • [49] Z. Y. He, Z. R. Lu, Time domain identification of multiply cracks in a beam, Structural Engineering and Mechanics 35 (2010) 773– 789.
  • [50] H. Y. Gao, X. L. Guo, X. F. Hu, Crack identification based on kriging surrogate model, Structural Engineering and Mechanics 41 (2012) 25–41.
  • [51] A. Greco, A. Pau, Detection of a concentrated damage in a parabolic arch by measured static displacements, Structural Engineering and Mechanics 39 (2011) 751–765.
  • [52] A. H. Gandomi, M. G. Sahab, A. Rahai, A dynamic nondestructive damage detection methodology for orthotropic plate structures, Structural Engineering and Mechanics 39 (2011) 223–239.
  • [53] E. Viola, P. Bocchini, Non-destructive parametric system identification and damage detection in truss structures by static tests, Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and Performance 9 (2013) 384–402.
  • [54] F. Civan, C. M. Sliepcevich, Application of differential quadrature in solution of pool boiling in cavities, Proceedings of the Oklahoma Academy of Science 65 (1985) 73–78.
  • [55] E. Viola, F. Tornabene, E. Ferretti, N. Fantuzzi, Soft core plane state structures under static loads using GDQFEM and cell method, CMES 94 (4) (2013) 301–329.
  • [56] E. Viola, F. Tornabene, E. Ferretti, N. Fantuzzi, Gdqfem numerical simulations of continuous media with cracks and discontinuities, CMES 94 (4) (2013) 331–369.
  • [57] N. Fantuzzi, F. Tornabene, E. Viola, Generalized differential quadrature finite element method for vibration analysis of arbitrarily shaped membranes, International Journal of Mechanical Sciences 79 (1) (2014) 216–251.
  • [58] T. M. Tharp, A finite element for edge-cracked beam columns, International Journal for Numerical Methods in Engineering 24 (10) (1987) 1941–1950.
  • [59] E. Cabib, L. Freddi, A. Morassi, D. Percivale, Thin notched beams, Journal of elasticity 64 (2001) 157–178. [Crossref]
  • [60] E. Viola, L. Federici, L. Nobile, Detection of crack location using cracked beam element method for structural analysis, Theoretical and Applied Fracture Mechanics 36 (1) (2001) 23 – 35.
  • [61] E. Viola, L. Nobile, L. Federici, Formulation of cracked beam element for structural analysis, Journal of Engineering Mechanics 128 (2) (2002) 220–230. [Crossref]
  • [62] N. Fantuzzi, F. Tornabene, Strong formulation finite element method for arbitrarily shaped laminated plates - i. theoretical analysis, Advances in Aircraft and Spacecraft Science 1 (2) (2014) 125–143.
  • [63] N. Fantuzzi, F. Tornabene, Strong formulation finite element method for arbitrarily shaped laminated plates - ii. numerical analysis, Advances in Aircraft and Spacecraft Science 1 (2) (2014) 145–175.
  • [64] F. Tornabene, E. Viola, Vibration analysis of spherical structural elements using the GDQ method, Computers and Mathematics with Applications 53 (10) (2006) 1538–1560.
  • [65] F. Tornabene, E. Viola, 2-d solution for free vibrations of parabolic shells using generalized differential quadrature method, European Journal of Mechanics - A/Solids 27 (6) (2008) 1001–1025. [Crossref]
  • [66] F. Tornabene, E. Viola, D. J. Inman, 2-d differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures, Journal of Sound and Vibration 328 (3) (2009) 259–290.
  • [67] F. Tornabene, A. Marzani, E. Viola, I. Elishakoff, Critical flow speeds of pipes conveying fluid by the generalized differential quadrature method, Advances in Theoretical and Applied Mechanics 3 (3) (2010) 121–138.
  • [68] E. Tufekci, O. Ozdemirci Yigit, Effects of geometric parameters on in-plane vibrations of two-stepped circular beams, Structural Engineering and Mechanics 42 (2) (2012) 131–152.
  • [69] E. Viola, F. Tornabene, Vibration analysis of damaged circular arches with varying cross-section, Struct. Int. Durab. (SIDSDHM) 1 (2) (2005) 155 – 169.
  • [70] E. Viola, F. Tornabene, Free vibrations of four-parameter functionally graded parabolic panels and shells of revolution, European Journal of Mechanics - A/Solids 28 (5) (2009) 991–1013. [Crossref]
  • [71] F. Tornabene, Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution, Computer Methods in Applied Mechanics and Engineering 198 (37-40) (2009) 2911– 2935.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_1515_cls-2015-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.