PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 2 | 1 |
Tytuł artykułu

Vibration analysis of multi-stepped and multi-damaged parabolic arches using GDQ

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates the in-plane free vibrations of multi-stepped and multi-damaged parabolic arches, for various boundary conditions. The axial extension, transverse shear deformation and rotatory inertia effects are taken into account. The constitutive equations relating the stress resultants to the corresponding deformation components refer to an isotropic and linear elastic material. Starting from the kinematic hypothesis for the in-plane displacement of the shear-deformable arch, the equations of motion are deduced by using Hamilton’s principle. Natural frequencies and mode shapes are computed using the Generalized Differential Quadrature (GDQ) method. The variable radius of curvature along the axis of the parabolic arch requires, compared to the circular arch, a more complex formulation and numerical implementation of the motion equations as well as the external and internal boundary conditions. Each damage is modelled as a combination of one rotational and two translational elastic springs. A parametric study is performed to illustrate the influence of the damage parameters on the natural frequencies of parabolic arches for different boundary conditions and cross-sections with localizeddamage.Results for the circular arch, derived from the proposed parabolic model with the derivatives of some parameters set to zero, agree well with those published over the past years.
Wydawca
Rocznik
Tom
2
Numer
1
Opis fizyczny
Daty
otrzymano
2014-09-25
zaakceptowano
2014-11-18
online
2014-12-18
Twórcy
autor
  • Department of Civil,
    Chemical, Environmental and Materials Engineering - DICAM, University
    of Bologna, Viale del Risorgimento 2, 40136, Bologna, Italy
  • Department of Civil,
    Chemical, Environmental and Materials Engineering - DICAM, University
    of Bologna, Viale del Risorgimento 2, 40136, Bologna, Italy
  • Department of Civil,
    Chemical, Environmental and Materials Engineering - DICAM, University
    of Bologna, Viale del Risorgimento 2, 40136, Bologna, Italy
  • Department of Civil,
    Chemical, Environmental and Materials Engineering - DICAM, University
    of Bologna, Viale del Risorgimento 2, 40136, Bologna, Italy
Bibliografia
  • [1] G. Karami, P. Malekzadeh, In-plane free vibration analysis ofcircular arches with varying cross-sections using differentialquadrature method, Journal of Sound and Vibration 274 (3–5)(2004) 777 – 799.
  • [2] J.-S.Wu, L.-K. Chiang, A new approach for free vibration analysisof arches with effects of shear deformation and rotary inertiaconsidered, Journal of Sound and Vibration 277 (1–2) (2004) 49– 71.
  • [3] E. Viola, E. Artioli, M. Dilena, Analytical and differential quadratureresults for vibration analysis of damaged circular arches,Journal of Sound and Vibration 288 (4–5) (2005) 887 – 906.
  • [4] M. N. Cerri, G. C. Ruta, Detection of localised damage in planecircular arches by frequency data, Journal of Sound and Vibration270 (1–2) (2004) 39 – 59.
  • [5] M.-S. Marefat, E. Ghahremani-Gargary, S. Ataei, Load test of aplain concrete arch railway bridge of 20-m span, Constructionand Building Materials 18 (9) (2004) 661 – 667.
  • [6] K.-H. Ng, C. A. Fairfield, Modifying the mechanism method ofmasonry arch bridge analysis, Construction and Building Materials18 (2) (2004) 91 – 97.
  • [7] M. N. Cerri, M. Dilena, G. C. Ruta, Vibration and damage detectionin undamaged and cracked circular arches: Experimentaland analytical results, Journal of Sound and Vibration 314 (1–2)(2008) 83 – 94.
  • [8] G. de Felice, Assessment of the load-carrying capacity of multispanmasonry arch bridges using fibre beam elements, EngineeringStructures 31 (8) (2009) 1634 – 1647.
  • [9] K. M. Ahmed, Free vibration of curved sandwich beams by themethod of finite elements, Journal of Sound and Vibration 18 (1)(1971) 61 – 74.[Crossref]
  • [10] D. G. Ashwell, A. B. Sabir, T. M. Roberts, Further studies in theapplication of curved finite elements to circular arches, InternationalJournal of Mechanical Sciences 13 (6) (1971) 507 – 517.
  • [11] M. Petyt, C. C. Fleischer, Free vibration of a curved beam, Journalof Sound and Vibration 18 (1) (1971) 17 – 30.[Crossref]
  • [12] D. J. Dawe, Curved finite elements for the analysis of shallowanddeep arches, Computers and Structures 4 (3) (1974) 559 – 580.
  • [13] D. J. Dawe, Numerical studies using circular arch finite elements,Computers and Structures 4 (4) (1974) 729 – 740.
  • [14] G. Prathap, The curved beam/deep arch/finite ring element revisited,International Journal for Numerical Methods in Engineering21 (3) (1985) 389–407.
  • [15] J. K. Choi, J. K. Lim, General curved beam elements based on theassumed strain fields, Computers and Structures 55 (3) (1995)379 – 386.
  • [16] E. Viola, E. Artioli, The g.d.q. method for the harmonic dynamicanalysis of rotational shell structural elements, Structural Engineeringand Mechanics 17 (6) (2004) 789–817.
  • [17] E. Artioli, P. L. Gould, E. Viola, A differential quadrature methodsolution for shear deformable shells of revolution, EngineeringStructures 27 (2005) 1879–1892.[Crossref]
  • [18] E. Artioli, E. Viola, Static analysis of shear-deformable shellsof revolution via g.d.q. method, Structural Engineering and Mechanics19 (4) (2005) 459–475.
  • [19] F. Tornabene, N. Fantuzzi, F. Ubertini, E. Viola, Strong formulationfinite element method based on differential quadrature: asurvey, Applied Mechanics Reviews doi:10.1115/1.4028859, InPress.[Crossref]
  • [20] A. Pau, A. Greco, F. Vestroni, Numerical and experimental detectionof concentrated damage in a parabolic arch by measuredfrequency variations, Journal of Vibration and Control 17 (4)(2010) 605–614.[Crossref]
  • [21] E. Viola, M. Dilena, F. Tornabene, Analytical and numerical resultsfor vibration analysis of multi-stepped and multi-damagedcircular arches, Journal of Sound and Vibration 299 (1-2) (2007)143 – 163.
  • [22] B. D. Reddy, M. B. Volpi, Mixed finite element methods for thecircular arch problem, Computer Methods in Applied Mechanicsand Engineering 97 (1) (1992) 125 – 145.[Crossref]
  • [23] P. Ricci, E. Viola, Stress intensity factors for cracked t-sectionsand dynamic behaviour of t-beams, Engineering Fracture Mechanics73 (1) (2006) 91 – 111.
  • [24] R. Bellman, J. Casti, Differential quadrature and long-term integration,Journal of Mathematical Analysis and Applications34 (2) (1971) 235 – 238.[Crossref]
  • [25] R. Bellman, B. G. Kashef, J. Casti, Differential quadrature: Atechnique for the rapid solution of nonlinear partial differentialequations, Journal of Computational Physics 10 (1) (1972) 40 –52.[Crossref]
  • [26] F. Civan, C. M. Sliepcevich, Differential quadrature for multidimensionalproblems, Journal of Mathematical Analysis andApplications 101 (2) (1984) 423 – 443.[Crossref]
  • [27] K. J. Kang, C. W. Bert, A. G. Striz, Vibration analysis of shear deformablecircular arches by the differential quadrature method, Journal of Sound and Vibration 181 (2) (1995) 353 – 360.
  • [28] C. W. Bert, M. Malik, Differential quadrature method in computationalmechanics: A review, Applied Mechanics Reviews 49 (1)(1996) 1–28.
  • [29] K. J. Kang, C.W. Bert, A. G. Striz, Vibration and buckling analysisof circular arches using dqm, Computers and Structures 60 (1)(1996) 49 – 57.
  • [30] C.-N. Chen, A generalized differential quadrature elementmethod, Computer Methods in Applied Mechanics and Engineering188 (1–3) (2000) 553 – 566.
  • [31] G. R. Liu, T. Y. Wu, In-plane vibration analyses of circular archesby the generalized differential quadrature rule, InternationalJournal of Mechanical Sciences 43 (11) (2001) 2597 – 2611.
  • [32] T. Y. Wu, G. R. Liu, Y. Y. Wang, Application of the generalizeddifferential quadrature rule to initial-boundary-value problems,Journal of Sound and Vibration 264 (4) (2003) 883 – 891.
  • [33] C. Shu, Differential quadrature and its application in engineering,Springer, 2000.
  • [34] E. Viola, F. Tornabene, Vibration analysis of conical shell structuresusing GDQ method, Far East Journal of Applied Mathematics25 (1) (2006) 23–39.
  • [35] A. Marzani, F. Tornabene, E. Viola, Nonconservative stabilityproblems via generalized differential quadrature method, Journalof Sound and Vibration 315 (1-2) (2008) 176–196.
  • [36] F. Tornabene, E. Viola, Free vibration analysis of functionallygraded panels and shells of revolution, Meccanica 44 (3) (2009)255–281.[Crossref]
  • [37] E. Viola, F. Tornabene, Free vibrations of three parameter functionallygraded parabolic panels of revolution, Mechanics ResearchCommunications 36 (5) (2009) 587–594.[Crossref]
  • [38] E. Viola, F. Tornabene, N. Fantuzzi, Generalized differentialquadrature finite element method for cracked composite structuresof arbitrary shape, Composite Structures 106 (1) (2013)815–834.[Crossref]
  • [39] E. Viola, F. Tornabene, E. Ferretti, N. Fantuzzi, On static analysisof composite plane state structures via GDQFEM and cellmethod, CMES 94 (5) (2013) 421–458.
  • [40] N. Fantuzzi, F. Tornabene, E. Viola, A. J. M. Ferreira, A strong formulationfinite element method (sfem) based on RBF and GDQtechniques for the static and dynamic analyses of laminatedplates of arbitrary shape, Meccanica 49 (1) (2014) 2503–2542.[Crossref]
  • [41] M. Kisa, Vibration and stability of axially loaded cracked beams,Structural Engineering and Mechanics 44 (2012) 305–323.
  • [42] M. Kisa, J. A. Brandom, Free vibration analysis of multiply openedgecracked beams by component mode synthesis, StructuralEngineering and Mechanics 10 (2000) 81–92.
  • [43] N. Fallah, M. Mousavi, An inverse approach for the calculationof flexibility coeflcient of open-side cracks in beam type structures,Structural Engineering and Mechanics 41 (2012) 285–297.
  • [44] H. R. Öz, In-plane vibration of cracked slightly curved beams,Structural Engineering and Mechanics 36 (2010) 679–695.
  • [45] E. Viola, A. Marzani, Crack effect on dynamic stability of beamsunder conservative and nonconservative forces, EngineeringFracture Mechanics 71 (2004) 699–718.
  • [46] A.Marzani, E. Viola, Effect of boundary conditions on the stabilityof beams under conservative and non-conservative forces,Structural Engineering and Mechanics 16 (2003) 195–217.
  • [47] Z. Cao, Y. Liu, A new numerical modelling for evaluating thestress intensity factors in 3-d fracture, Structural Engineeringand Mechanics 43 (2012) 321–336.
  • [48] M. R. Ayatollahi, R. Hashemi, H. Rokhi, New formulation for vibrationanalysis of timoshenko beam with double-sided cracks,Structural Engineering and Mechanics 34 (2010) 475–490.
  • [49] Z. Y. He, Z. R. Lu, Time domain identification of multiply cracksin a beam, Structural Engineering and Mechanics 35 (2010) 773–789.
  • [50] H. Y. Gao, X. L. Guo, X. F. Hu, Crack identification based on krigingsurrogate model, Structural Engineering and Mechanics 41(2012) 25–41.
  • [51] A. Greco, A. Pau, Detection of a concentrated damage in aparabolic arch by measured static displacements, Structural Engineeringand Mechanics 39 (2011) 751–765.
  • [52] A. H. Gandomi, M. G. Sahab, A. Rahai, A dynamic nondestructivedamage detection methodology for orthotropicplate structures, Structural Engineering and Mechanics 39(2011) 223–239.
  • [53] E. Viola, P. Bocchini, Non-destructive parametric system identificationand damage detection in truss structures by static tests,Structure and Infrastructure Engineering: Maintenance, Management,Life-Cycle Design and Performance 9 (2013) 384–402.
  • [54] F. Civan, C. M. Sliepcevich, Application of differential quadraturein solution of pool boiling in cavities, Proceedings of theOklahoma Academy of Science 65 (1985) 73–78.
  • [55] E. Viola, F. Tornabene, E. Ferretti, N. Fantuzzi, Soft core planestate structures under static loads using GDQFEM and cellmethod, CMES 94 (4) (2013) 301–329.
  • [56] E. Viola, F. Tornabene, E. Ferretti, N. Fantuzzi, Gdqfem numericalsimulations of continuous media with cracks and discontinuities,CMES 94 (4) (2013) 331–369.
  • [57] N. Fantuzzi, F. Tornabene, E. Viola, Generalized differentialquadrature finite element method for vibration analysis of arbitrarilyshaped membranes, International Journal of MechanicalSciences 79 (1) (2014) 216–251.
  • [58] T. M. Tharp, A finite element for edge-cracked beam columns, InternationalJournal for Numerical Methods in Engineering 24 (10)(1987) 1941–1950.
  • [59] E. Cabib, L. Freddi, A. Morassi, D. Percivale, Thin notchedbeams, Journal of elasticity 64 (2001) 157–178.[Crossref]
  • [60] E. Viola, L. Federici, L. Nobile, Detection of crack location usingcracked beam element method for structural analysis, Theoreticaland Applied Fracture Mechanics 36 (1) (2001) 23 – 35.
  • [61] E. Viola, L. Nobile, L. Federici, Formulation of cracked beam elementfor structural analysis, Journal of Engineering Mechanics128 (2) (2002) 220–230.[Crossref]
  • [62] N. Fantuzzi, F. Tornabene, Strong formulation finite elementmethod for arbitrarily shaped laminated plates - i. theoreticalanalysis, Advances in Aircraft and Spacecraft Science 1 (2)(2014) 125–143.
  • [63] N. Fantuzzi, F. Tornabene, Strong formulation finite elementmethod for arbitrarily shaped laminated plates - ii. numericalanalysis, Advances in Aircraft and Spacecraft Science 1 (2)(2014) 145–175.
  • [64] F. Tornabene, E. Viola, Vibration analysis of spherical structuralelements using the GDQ method, Computers and Mathematicswith Applications 53 (10) (2006) 1538–1560.
  • [65] F. Tornabene, E. Viola, 2-d solution for free vibrations ofparabolic shells using generalized differential quadraturemethod, European Journal of Mechanics - A/Solids 27 (6) (2008)1001–1025. [Crossref]
  • [66] F. Tornabene, E. Viola, D. J. Inman, 2-d differential quadraturesolution for vibration analysis of functionally graded conical,cylindrical shell and annular plate structures, Journal of Soundand Vibration 328 (3) (2009) 259–290.
  • [67] F. Tornabene, A. Marzani, E. Viola, I. Elishakoff, Critical flowspeeds of pipes conveying fluid by the generalized differentialquadrature method, Advances in Theoretical and Applied Mechanics3 (3) (2010) 121–138.
  • [68] E. Tufekci, O. Ozdemirci Yigit, Effects of geometric parameterson in-plane vibrations of two-stepped circular beams, StructuralEngineering and Mechanics 42 (2) (2012) 131–152.
  • [69] E. Viola, F. Tornabene, Vibration analysis of damaged circulararches with varying cross-section, Struct. Int. Durab. (SIDSDHM)1 (2) (2005) 155 – 169.
  • [70] E. Viola, F. Tornabene, Free vibrations of four-parameter functionallygraded parabolic panels and shells of revolution, EuropeanJournal of Mechanics - A/Solids 28 (5) (2009) 991–1013.[Crossref]
  • [71] F. Tornabene, Free vibration analysis of functionally gradedconical, cylindrical shell and annular plate structures with afour-parameter power-law distribution, Computer Methods inApplied Mechanics and Engineering 198 (37-40) (2009) 2911–2935.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_cls-2015-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.