PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 2 | 1 |
Tytuł artykułu

Prediction of natural frequencies of laminated curved panels using refined 2-D theories in the spectral collocation method

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a versatile and efficientmodeling and solution framework for free vibration analysis of composite laminated cylindrical and spherical panels modeled according to two-dimensional equivalent singlelayer and layerwise theories of variable order.Aunified formulation of the equations of motion is adopted which can be used for both thin and thick structures. The discretization procedure is based on the spectral collocation method and is presented in a compact matrix form which can be directly and easily implemented. The convergence and accuracy of the proposed approach is evaluated for panels having different boundary conditions, thickness and shallowness ratios, and lamination layups.
Wydawca
Rocznik
Tom
2
Numer
1
Opis fizyczny
Daty
otrzymano
2014-10-13
zaakceptowano
2014-11-14
online
2014-12-18
Twórcy
  • Department of Aerospace Science and
    Technology, Politecnico di Milano, via La Masa, 34, 20156, Milan,
    Italy
  • Department of Aerospace Science and
    Technology, Politecnico di Milano, via La Masa, 34, 20156, Milan,
    Italy
Bibliografia
  • [1] V.V. Novozhilov, Thin shell theory, P. Noordhoff, 1964.
  • [2] H. Kraus, Thin elastic shells, John Wiley & Sons, 1967.
  • [3] E. Ventsel, T. Krauthammer, Thin plates and shells, MarcelDekker, 2001.
  • [4] W. Soedel, Vibration of shells and plates, Marcel Dekker, 2004.
  • [5] A.W. Leissa, Vibration of shells, NASA-SP-288, 1973.
  • [6] K.M. Liew, S. Kitipornchai, C.M. Wang, Vibration of shallowshells: A reviewwith bibliography, Applied Mechanics Review, 50,1997, 431-444.
  • [7] M.S. Qatu, Recent research advances in the dynamic behaviorof shells: 1989-2000, Part 2: Homogeneous shells, Applied MechanicsReview, 55 (2002), 415-434.
  • [8] A.K. Noor, W.S. Burton, Assessment of computational modelsfor multilayered composite shells, Applied Mechanics Review, 43(1990), 67-97.[Crossref]
  • [9] M.S. Qatu, Recent research advances in the dynamic behavior ofshells: 1989-2000, Part 1: Laminated composite shells, AppliedMechanics Review, 55 (2002), 415-434.
  • [10] L. Meirovitch, Computational methods in structural dynamics,Sijthoff & Noordhoff, 1980.
  • [11] A.W. Leissa, M.S. Qatu, Vibration of continuous systems,McGraw-Hill, 2011.
  • [12] K.P. Soldatos, V.P. Hadjigeorgiou, Three-dimensional solution ofthe free vibration problem of homogeneous isotropic cylindricalshells and panels, Journal of Sound and Vibration, 137 (1990),369-384.[Crossref]
  • [13] J. Ye, K.P. Soldatos, Three-dimensional vibration of laminatedcylinders and cylindrical panels with symmetric or antisymmetriccross-ply lay-up, Composites Engineering, 4 (1994), 429-444.[Crossref]
  • [14] K.M. Liew, L.X. Peng, T.Y. Ng, Three-dimensional vibration analysisof spherical shell panels subjected to different boundary conditions,International Journal of Mechanical Sciences, 44 (2002),2103-2117.[Crossref]
  • [15] E. Asadi, W. Wang, M.S. Qatu, Static and vibration analysesof thick deep laminated cylindrical shells using 3D and variousshear deformation theories, Composite Structures, 94 (2012),494-500.[Crossref]
  • [16] E. Carrera, Theories and finite elements for multilayered platesand shells: a unified compact formulation with numerical assessmentand benchmarking, Archives of Computational Methods inEngineering, 10 (2003), 215-296.[Crossref]
  • [17] K.M. Liew, X. Zhao, A.J.M. Ferreira, A review of mesh less methodsfor laminated and functionally graded plates and shells, CompositeStructures, 93 (2011), 2031-2041.[Crossref][WoS]
  • [18] F. Tornabene, 2-D GDQ solution for free vibrations of anisotropicdoubly-curved shells and panels of revolution, Composite Structures,93 (2011), 1854-1876.[WoS]
  • [19] E. Asadi, M.S. Qatu, Free vibration of thick laminated cylindricalshells with different boundary conditions using general differentialquadrature, Journal of Vibration and Control, 19 (2012), 356-366.[Crossref][WoS]
  • [20] F. Tornabene, E. Viola, N. Fantuzzi, General higher-order equivalentsingle layer theory for free vibrations of doubly-curved laminatedcomposite shells and panels, Composite Structures, 104(2013), 94-117.[Crossref]
  • [21] E. Carrera, Layer-wise mixed models for accurate vibration analysisof multilayered plates, Journal of Applied Mechanics, 65(1998), 820-828.[Crossref]
  • [22] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, SpectralMethods - Fundamentals in Single Domains, Springer, Berlin,2006.
  • [23] B. Fornberg, A Practical Guide to Pseudospectral Methods, CambridgeUniversity Press, 1996.
  • [24] A.J.M Ferreira, E. Carrera, M. Cinefra, C.M.C. Roque, Analysisof laminated doubly-curved shells by a layerwise theory andradial basis functions collocation, accounting for through-thethicknessdeformation, Computational Mechanics, 48 (2011), 13-25.[Crossref]
  • [25] F.A. Fazzolari, E. Carrera, Advances in the Ritz formulation forfree vibration response of doubly-curved anisotropic laminatedcomposite shallow and deep shells, Composite Structures, 101(2013), 111-128.[Crossref]
  • [26] L. Dozio, E. Carrera, A variable kinematic Ritz formulation forvibration study of quadrilateral plates with arbitrary thickness,Journal of Sound and Vibration, 330 (2011), 4611-4632.[WoS][Crossref]
  • [27] L. Dozio, E. Carrera, Ritz analysis of vibrating rectangular andskew multilayered plates based on advanced variable-kinematicmodels, Composite Structures, 94 (2012), 2118-2128.[WoS][Crossref]
  • [28] L. Dozio, Natural frequencies of sandwich plates with FGM corevia variable-kinematic 2-D Ritz models, Composite Structures, 96(2013), 561-568.[WoS][Crossref]
  • [29] J.N. Reddy, Mechanics of Laminated Composite Plates andShells: Theory and Analysis, CRC Press, 2004.
  • [30] J.A.C. Weideman, S.C. Reddy, A MATLAB differentiation matrixsuite, ACM Transactions on Mathematical Software, 26 (2000),465-519. [Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_cls-2015-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.