Warianty tytułu
Języki publikacji
Abstrakty
Bowen’s notion of sofic entropy is a powerful invariant for classifying probability-preserving actions of sofic groups. It can be defined in terms of the covering numbers of certain metric spaces associated to such an action, the ‘model spaces’. The metric geometry of these model spaces can exhibit various interesting features, some of which provide other invariants of the action. This paper explores an approximate connectedness property of the model spaces, and uses it give a new proof that certain groups admit factors of Bernoulli shifts which are not Bernoulli. This was originally proved by Popa. Our proof covers fewer examples than his, but provides additional information about this phenomenon.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
Daty
otrzymano
2016-02-19
zaakceptowano
2016-06-06
online
2016-08-29
Twórcy
autor
- Courant Institute, New York University, 251 Mercer St, New York, NY 10012, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_agms-2016-0006