Institut für Mathematik, Universität Zürich, Winterthurer Strasse 190, CH-8057 Zürich, Switzerland
Bibliografia
[1] S. Buyalo, V. Schroeder, Möbius structures and Ptolemy spaces: boundary at infinity of complex hyperbolic spaces, arXiv:1012.1699, 2010.
[2] S. Buyalo, V. Schroeder, Möbius characterization of the boundary at infinity of rank one symmetric spaces, Geometriae Dedicata, 172, (2014), no.1, 1-45. [WoS]
[3] S. Buyalo, V. Schroeder, Elements of asymptotic geometry, EMS Monographs in Mathematics, 2007, 209 pages.
[4] R. Chow, Groups quasi-isometric to complex hyperbolic space. Trans. Amer. Math. Soc. 348 (1996), no. 5, 1757–1769.
[5] T. Foertsch, V. Schroeder, Metric Möbius geometry and a characterization of spheres, Manuscripta Math. 140 (2013), no. 3-4, 613–620. [WoS]
[6] T. Foertsch, V. Schroeder, Hyperbolicity, CAT(−1)-spaces and Ptolemy inequality, Math. Ann. 350 (2011), no. 2, 339–356. [WoS]
[7] P. Hitzelberger, A. Lytchak, Spaces with many affine functions, Proc. Amer. Math. Soc. 135 (2007), no. 7, 2263–2271.
[8] L. Kramer, Two-transitive Lie groups, J. reine angew. Math. 563 (2003), 83–113.
[9] I. Mineyev, Metric conformal structures and hyperbolic dimension, Conform. Geom. Dyn. 11 (2007), 137–163 (electronic).