Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

Concrete subspaces and quotient spaces of locally convex spaces and completing sequences

Seria
Rozprawy Matematyczne tom/nr w serii: 318 wydano: 1992
Zawartość
Warianty tytułu
Abstrakty
EN

CONTENTS
Introduction..................................................................................5
1. Almost bounded sets and operators........................................6
2. Eidelheit’s theorem................................................................13
3. Nuclear Köthe quotients.........................................................20
4. Nuclear Köthe subspaces and completing sequences...........22
5. Applications...........................................................................25
6. Spaces of continuous functions.............................................30
References................................................................................35
Miejsce publikacji
Warszawa
Copyright
Seria
Rozprawy Matematyczne tom/nr w serii: 318
Liczba stron
36
Liczba rozdzia³ów
Opis fizyczny
Dissertationes Mathematicae, Tom CCCXVIII
Daty
wydano
1992
otrzymano
1991-06-10
poprawiono
1991-11-12
Twórcy
  • Department of Mathematics, Middle East Technical University, 06531 Ankara, Turkey
  • DDepartment of Mathematics, Middle East Technical University, 06531 Ankara, Turkey
Bibliografia
  • [1] S. Bellenot and E. Dubinsky, Fréchet spaces with nuclear Köthe quotients, Trans. Amer. Math. Soc. 273 (1982), 579-594.
  • [2] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164.
  • [3] J. Bonet, On the identity L(E, F) = LB(E, F) for pairs of locally convex spaces E and F, Proc. Amer. Math. Soc. 99 (1987), 249-255.
  • [4] J. Bonet and A. Galbis, The identity L(E, F) = LB(E, F), tensor products and inductive limits, Note Mat. 9 (1989), 195-216.
  • [5] M. De Wilde, Closed Graph Theorems and Webbed Spaces, Pitman, 1978.
  • [6] S. Dierolf, Über Quotienten vollständiger topologischer Vektorräume, Manuscripta Math. 17 (1975), 73-77.
  • [7] J. Diestel, Sequences and Series in Banach Spaces, Springer, 1984.
  • [8] M. Eidelheit, Zur Theorie der Systeme linearer Gleichungen, Studia Math. 6 (1936), 139-148.
  • [9] R. Engelking, General Topology, PWN, Warszawa 1977.
  • [10] H. Jarchow, Locally Convex Spaces, Teubner, 1981.
  • [11] G. Köthe, Topological Vector Spaces I, II, Springer, 1969-1979.
  • [12] S. Önal, Nuclear Köthe quotients of Fréchet spaces, in: Advances in the Theory of Fréchet Spaces, Kluwer, 1989, 255-258.
  • [13] S. Önal and T. Terzioğlu, Unbounded linear operators and nuclear Köthe quotients, Arch. Math. (Basel) 54 (1990), 576-581.
  • [14] S. Önal and T. Terzioğlu, A normability condition on locally convex spaces, Rev. Mat. Univ. Complut. Madrid 4 (1991), 55-63.
  • [15] S. Önal and M. Yurdakul, A note on strictly singular operators, Doğa Mat. 15 (1991), 42-47.
  • [16] T. Terzioğlu and M. Yurdakul, Restrictions of unbounded continuous linear operators on Fréchet spaces, Arch. Math. (Basel) 46 (1986), 547-550.
  • [17] M. Valdivia, Completing sequences and semi-LB-spaces, Note Mat. 7 (1987), 55-82.
  • [18] D. Vogt, Frécheträume, zwischen denen jede stetige lineare Abbildung beschränkt ist, J. Reine Angew. Math. 345 (1983), 182-200.
  • [19] D. Vogt, Kernels of Eidelheit matrices and related topics, Doğa Mat. 10 (1986), 232-256.
  • [20] D. Vogt, Topics on projective spectra of (LB)-spaces, in: Advances in the Theory of Fréchet Spaces, Kluwer, 1989, 11-18.
  • [21] D. Vogt, Remarks on a paper of S. Önal and T. Terzioğlu, Doğa Mat. 15 (1991), 202-206.
Języki publikacji
EN
Uwagi
1991 Mathematics Subject Classification: Primary 46A03, 46A04, 46A45; Secondary 46A11, 46A13, 46E10.
Identyfikator YADDA
bwmeta1.element.dl-catalog-8fc03195-9eac-4710-9d2f-41ac63f3d955
Identyfikatory
ISBN
83-85116-42-7
ISSN
0012-3862
Kolekcja
DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.