Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

Relativization of some aspects of the theory of functions of bounded variation

Rozprawy Matematyczne tom/nr w serii: 320 wydano: 1992
Warianty tytułu
We present here relativized versions of some aspects of the theory of functions of bounded variation, viz. relative to a function of bounded variation, without going into relative bounded variation. A few results have been known in this direction for some time when the functions involved are continuous, but due to the complications that arise when the functions are discontinuous, no systematic attempt seems to have been made in this direction in the past.
Let B denote the linear space of all real-valued functions of bounded variation defined on a given compact interval I = [a,b]. Given f,g ∈ B, we present here a notion of mutual singularity of f and g, and a notion of absolute continuity (or AC) of f relative to g, which are similar to these notions in the case of signed measures. Further, we present decompositions of these two properties into mutual lower and upper singularities and relative lower and upper absolute continuities.
Several characterizations of the above six properties are obtained here in terms of variations of f and g. Further, additivity theorems dealing with the additivity of these properties are obtained, and reduction theorems are obtained which reduce these properties to the discontinuous, AC and continuous singular components of f and g. Also, characterizations of these properties are obtained in terms of derivatives of f and g. These characterizations are based on a refined version of a theorem of de La Vallée Poussin which deals with derivatives of the three variations of f ∈ B in terms of the derivative of f.
Next, with the help of the above new notions and results we present relativized versions of some other aspects of the theory of functions of bounded variation. A new notion of normalization f* of f ∈ B and a related normalized version of relative derivative also play significant roles in this development.
Firstly, characterizations of all the above six properties are obtained here in terms of normalized relative derivative and the Lebesgue–Stieltjes integral (or LS-integral). Following are some other highlights of the developments:
A Radon–Nikodym theorem is obtained for LS-integral where the normalized relative derivative turns out to be the Radon–Nikodym derivative in general. Also, two versions of the fundamental theorem of calculus are obtained for LS-integral, and a theorem dealing with the reconstruction of a function from its relative derivative is obtained.
Further, relativized versions of (i) a monotonicity theorem of Lebesgue, (ii) the Lebesgue decomposition theorem, (iii) Lusin’s property (N) and the Banach–Zarecki theorem on AC, (iv) the results on Lebesgue points, and (v) a theorem of Tonelli on arc length are obtained. Also, characterizations of mutual singularity and relative AC in terms of arc length, a general formula for arc length based on relative Lebesgue decomposition, and a solution of an old problem of Denjoy on arc length in higher dimensions are obtained.
Next, we consider convergence in B under variation norm relative to which B is known to be a Banach space. Some theorems dealing with the stability of variations and components under norm convergence are obtained here for sequences and series of functions in B.
Further, a relativized version of Fubini’s theorem on term-by-term differentiation is obtained, and an extension of Fubini’s (relativized) theorem is obtained which holds in general under a form of convergence which is stronger than norm convergence. Finally, some approximation theorems are obtained which deal with approximation in some closed subspaces of B by certain elementary functions in those subspaces. E.g. the functions in B which are AC relative to some u ∈ B can be approximated in the variation norm by piecewise linear functions relative to u, and also in a sense by polynomials in u.

I. Introduction and preliminaries.....................................5
II. Mutual singularities...................................................14
III. Relative absolute continuities...................................33
IV. Normalized relative derivative..................................50
V. Relativization of other classical theorems.................73
VI. Convergence in B....................................................95
Index of symbols.........................................................121
Index of terms.............................................................123
Miejsce publikacji
Rozprawy Matematyczne tom/nr w serii: 320
Liczba stron
Liczba rozdzia³ów
Opis fizyczny
Dissertationes Mathematicae, Tom CCCXX
  • Department of Mathematics, Faculty of Science, University of Alberta, Edmonton, Alberta Canada T6G 2G1
  • [1] P. S. Bullen, Non-absolute integrals: a survey, Real Anal. Exchange 5 (1979-80), 195-259.
  • [2] M. C. Chakrabarty, Some results on AC-ω functions, Fund. Math. 64 (1969), 219-230.
  • [3] G. Choquet, Topology, Academic Press, New York 1966.
  • [4] P. J. Daniell, Differentiation with respect to a function of limited variation, Trans. Amer. Math. Soc. 19 (1918), 353-362.
  • [5] Ch. J. de La Vallée Poussin, Sur l'intégrale de Lebesgue, Trans. Amer. Math. Soc. 16 (1915), 435-501.
  • [6] Ch. J. de La Vallée Poussin, Intégrales de Lebesgue, Fonctions d'ensemble, Classes de Baire, 2e éd., Gauthier-Villars, Paris 1950.
  • [7] A. Denjoy, L'additivité métrique vectorielle des ensembles et les discontinuités tangentielles sur les courbes rectifiables, Bull. Math. Soc. Roumaine Sci. 35 (1933), 83-105.
  • [8] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience, New York 1964.
  • [9] G. Fubini, Sulla derivazione per serie, Atti Accad. Naz. Lincei Rend. 24 (1915), 204-206.
  • [10] K. M. Garg, On nowhere monotone functions, Thesis, Lucknow University, Lucknow (India), 1962.
  • [11] K. M. Garg, On singular functions, Rev. Roumaine Math. Pures Appl. 14 (1969), 1441-1452.
  • [12] K. M. Garg, Characterizations of absolutely continuous and singular functions, in: Proc. of Conference on Constructive Theory of Functions (Approximation Theory) (Budapest 1969), Akadémiai Kiadó, Budapest 1972, 183-188.
  • [13] K. M. Garg, On bilateral derivates and the derivative, Trans. Amer. Math. Soc. 210 (1975), 295-329.
  • [14] K. M. Garg, Construction of absolutely continuous and singular functions that are nowhere of monotonic type, in: Contemp. Math. 42, Amer. Math. Soc., Providence, R.I., 1985, 61-79.
  • [15] K. M. Garg, Decompositions of mutual singularity and relative absolute continuity of signed measures , to appear.
  • [16] K. M. Garg, Properties of typical functions in some subspaces of the space of functions of bounded variation, to appear.
  • [17] P. R. Halmos, Measure Theory, Van Nostrand, New York 1950.
  • [18] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. I, Springer, New York 1963.
  • [19] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer, New York 1965.
  • [20] E. W. Hobson, The Theory of Functions of a Real Variable and the Theory of Fourier's Series, Vol. II, Dover, New York 1958.
  • [21] R. L. Jeffery, Non-absolutely convergent integrals with respect to functions of bounded variation, Trans. Amer. Math. Soc. 34 (1932), 645-675.
  • [22] R. L. Jeffery, Generalized integrals with respect to functions of bounded variation, Canad. J. Math. 10 (1958), 617-626.
  • [23] H. Kober, On decompositions and transformations of functions of bounded variation, Ann. of Math. 53 (1951), 565-580.
  • [24] K. Kuratowski, Topology, Vol. I, Academic Press, New York 1966.
  • [25] K. Kuratowski, Topology, Vol. II, Academic Press, New York 1968.
  • [26] H. Lebesgue, Leçons sur l'intégration et la recherche des fonctions primitives, 3rd ed., Chelsea, New York 1973.
  • [27] N. Lusin, Integral and Trigonometric Series, Moscow 1915 (in Russian).
  • [28] I. P. Natanson, Theory of Functions of a Real Variable, Vol. I, Ungar, New York 1955.
  • [29] I. P. Natanson, Theory of Functions of a Real Variable, Vol. II, Ungar, New York 1960.
  • [30] H. Rademacher, Eineindeutige Abbildungen und Messbarkeit, Monatsh. Math. Phys. 27 (1916), 183-291.
  • [31] J. Radon, Theorie und Anwendungen der absolut additiven Mengenfunktionen, S.B. Akad. Wiss. Wien 122 (1913), 1295-1438.
  • [32] J. Ridder, Über den Perronschen Integralbegriff und seine Beziehung zu den R-, L- und D-Integralen, Math. Z. 34 (1931), 234-269.
  • [33] H. L. Royden, Real Analysis, 2nd ed., Macmillan, New York 1968.
  • [34] S. Saks, Theory of the Integral, Monografie Mat. 7, PWN, Warszawa 1937.
  • [35] L. Tonelli, Sulla rettificazione delle curve, Atti Accad. Sci. Torino 43 (1908), 399-416.
  • [36] L. Tonelli, Sul differenziale dell'arco di curva, Atti Accad. Naz. Lincei (5) 25 (1) (1916), 207-213.
  • [37] W. H. Young, On integrals and derivates with respect to a function, Proc. London Math. Soc. 15 (1917), 35-63.
  • [38] Z. Zahorski, Sur l'ensemble des points de non-dérivabilité d'une fonction continue, Bull. Soc. Math. France 74 (1946), 147-178.
Języki publikacji
1991Mathematics Subject Classification:Primary 26-02, 26A42, 26A45, 28-02; Secondary 26A15, 26A24, 26A30, 26A46, 28A75
Identyfikator YADDA
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.