VOL. XXXI 1974 FASC. 2

REPRESENTATION THEOREMS AND FATOU THEOREMS FOR PARABOLIC SYSTEMS IN THE SENSE OF PETROVSKII

BY

## J. CHABROWSKI (KATOWICE)

Representation theorems and Fatou theorems for non-negative classical solutions of second-order parabolic equations have been considered in several papers. The representation theorem for non-negative solutions of the equation of heat conduction was first proved by Widder [23] and subsequently extended to solutions of second-order parabolic equations with smooth coefficients by Krzyżański [20]. Aronson and Besala [6] and Bodanko [8] obtained Widder representation for parabolic equations with unbounded coefficients. Properties of the non-negative weak solutions of linear equations with discontinuous coefficients were studied by Aronson [2]-[4]. Further extensions of representation theorems for non-negative solutions of a special parabolic system were obtained by the author [11]-[13]. Kato [19] derived Fatou theorem for non-negative solutions of the equation of heat conduction by using Widder representation. These results were extended by Johnson [17] and [18] to the class  $L_{\theta}^{p}$ , which includes non-negative solutions. In this paper a representation theorem and the Fatou theorem are proved for the solutions of parabolic systems of arbitrary order.

## 1. Preliminaries. Consider the parabolic system

(1) 
$$\frac{\partial u_i}{\partial t} = \sum_{|k|=2b}^{j=1,\ldots,N} A_k^{ij}(t,x) \frac{\partial^{|k|} u_j}{\partial x_1^{k_1} \ldots \partial x_n^{k_n}} \qquad (i = 1,\ldots,N),$$

where the  $A_k^{ij}$  are functions defined on  $[0, T] \times R_n, k_1, \ldots, k_n$  are non-negative integers,  $k = (k_1, \ldots, k_n)$ , and  $|k| = k_1 + \ldots + k_n$ .

Throughout the paper it will be assumed that the coefficients satisfy the following conditions:

I. The principal coefficients of (1) are continuous in t uniformly with respect to  $(t, x) \in [0, T] \times R_n$  and Hölder continuous (exponent  $\alpha$ ) in x, uniformly with respect to (t, x) in  $[0, T] \times R_n$ .

## II. The derivatives

$$rac{\partial^{|h|}}{\partial x_1^{h_1}\ldots\partial x_n^{h_n}}A_k^{ij}(t,x) \hspace{0.5cm} (0\leqslant |h|\leqslant |k|)$$

are continuous bounded functions in  $[0, T] \times R_n$  and Hölder continuous (exponent a) in x, uniformly with respect to (t, x) in bounded subsets of  $[0, T] \times R_n$ .

III. The system (1) is uniformly parabolic in the sense of Petrovskii, i. e. the roots  $\lambda_i$  of the polynomial

$$\det_{r,s=1,\ldots,N} \Big[ \sum^{|k|=2b} A_k^{rs}(t,x) (i\xi_1)^{k_1} \ldots (i\xi_n)^{k_n} - \delta_{rs} \lambda \Big]$$

satisfy the inequality

$$\max_{j=1,...,N} \sup_{|\xi|=1} \{\operatorname{Re} \lambda_j(t,x;\;\xi)\} \leqslant -\delta,$$

where  $\delta$  is a positive constant.

Under these hypotheses, the fundamental matrix  $\{\Gamma_{ij}(t, x; \tau, y)\}\$  (i, j = 1, ..., N) for the system (1) exists and satisfies the estimate

(2) 
$$|\Gamma_{ij}(t, x; \tau, y)| \leqslant C(t-\tau)^{-n/2b} \exp\left[-c\left(\frac{|x-y|^{2b}}{t-\tau}\right)^{1/(2b-1)}\right]$$
 
$$(i, j = 1, ..., N)$$

for  $x, y \in R_n$ ,  $0 \le \tau < t \le T$ , where c and C are positive constants ([21], [15], p. 73, [16], chap. 9). Notice that from our assumptions it follows that there exists a fundamental matrix for the adjoint system, so uniqueness theorems for the Cauchy problem can be applied ([15], chap. 3).

The function space that enters in the theorems is the set of all measurable functions f defined on  $R_n$ , such that

$$\int\limits_{R_n} |f(x)|^p \exp\left[-p\beta |x|^{2b/(2b-1)}\right] dx < \infty, \quad 1 \leqslant p < \infty,$$

where the parameter  $\beta$  is non-negative. We denote this space by  $L^p_{\beta}$  and define the norm

$$\|f\|_{L^{p}_{eta}} = \left\{ \int\limits_{R_{n}} |f(x)|^{p} \exp\left[-p\beta |x|^{2b/(2b-1)}\right] dx 
ight\}^{1/p}, \quad 1 \leqslant p < \infty.$$

In the case  $p = \infty$ , we introduce the norm

$$||f||_{L^{\infty}_{\beta}} = \underset{R_n}{\operatorname{ess \, sup}} |f(x)| \exp \left[ -\beta |x|^{2b/(2b-1)} \right]$$

and the set of all measurable functions f for which  $||f||_{L^{\infty}_{\beta}} < \infty$  is denoted by  $L^{\infty}_{\beta}$ .

2. Representation theorems and Fatou property. Before proving the main theorem, let us establish the following

LEMMA 1. Let  $\{\mu_i\}$  (j = 1, ..., N) be measures such that

$$\int\limits_{R_n} \exp \left( \, -\beta \, |x|^{2b/(2b-1)} \right) |\mu_j| \, (dx) < \, \infty \qquad (j \, = 1 \, , \, \ldots , \, N) \, .$$

Then

$$\lim_{t\to 0} \int\limits_{R_n} \sum_{i=1}^N \Gamma_{ij}(t, x; 0, y) \mu_j(dy) = \mu_i \quad (i = 1, ..., N)$$

in the topology of weak convergence of measures.

In the sequel the word *measure* will always mean a Borel measure on  $R_n$ .

**Proof.** The proof is an adaptation of Johnson's method [17]. Let  $\varphi$  be of class  $C^{\infty}(R_n)$  with compact support. Using the decomposition of  $\Gamma_{ij}$  we get ([16], chapter 9, section 4)

$$\begin{split} \int_{R_{n}} \left[ \int_{R_{n}} \sum_{j=1}^{N} \Gamma_{ij}(t, x; 0, y) \mu_{j}(dy) \right] \varphi(x) dx \\ &= \sum_{j=1}^{N} \int_{R_{n}} \mu_{j}(dy) \int_{R_{n}} Z_{ij}(t, x - y; 0, y) \varphi(y) dx + \\ &+ \sum_{j=1}^{N} \int_{R_{n}} \mu_{j}(dy) \int_{R_{n}} Z_{ij}(t, x - y; 0, y) [\varphi(x) - \varphi(y)] dx + \\ &+ \sum_{j=1}^{N} \int_{R_{n}} \mu_{j}(dy) \int_{R_{n}} R_{ij}(t, x; 0, y) \varphi(x) dx = J_{1} + J_{2} + J_{3}, \end{split}$$

where

$$\begin{split} &\Gamma_{ij}(t,\,x;\,\,0\,,\,\,y)\\ &=Z_{ij}(t,\,x-y\,;\,\,0\,,\,\,y)+\int\limits_0^t d\sigma\int\limits_{R_n}\sum\limits_{k=1}^N Z_{ik}(t,\,x-z\,;\,\,\sigma,\,z)\varPhi_{kj}(\sigma,\,z\,;\,\,0\,,\,\,y)\,dz\\ &=Z_{ij}(t,\,x-y\,;\,\,0\,,\,\,y)+R_{ij}(t,\,x\,;\,\,0\,,\,y) \end{split}$$

and  $\{Z_{ij}(t, x-z; \tau, y)\}\ (i, j = 1, ..., N)$  is the fundamental solution of the system (with y fixed)

$$\frac{\partial u_i}{\partial t} = \sum_{|k|=2k}^{j=1,\ldots,N} A_k^{ij}(t,y) \frac{\partial^{|k|} u_j}{\partial x_1^{k_1} \ldots \partial x_n^{k_n}} \quad (i=1,\ldots,N)$$

and satisfies the estimate

(3) 
$$|Z_{ij}(t, x-z; \tau, y)| \leq C(t-\tau)^{-n/2b} \exp\left[-c\left(\frac{|x-z|^{2b}}{t-\tau}\right)^{1/(2b-1)}\right]$$

for  $x, y \in R_n$ ,  $0 \le \tau < t \le T$ . From the uniqueness theorem [1] for the Cauchy problem it follows that

(4) 
$$\int_{R_n} Z_{ij}(t, x-z; \tau, y) dx = \delta_{ij} \quad (i, j = 1, ..., N).$$

To evaluate the integral  $J_2$  we note that for any positive numbers  $\beta$  and  $\varepsilon \in (0, c)$  there exist positive numbers  $\beta_1$  and  $\alpha_1$  such that

$$-\frac{\varepsilon}{a_1^{1/(2b-1)}} |x-y|^{2b/(2b-1)} + \beta |y|^{2b/(2b-1)} \leqslant \beta_1 |x|^{2b/(2b-1)}$$

for  $x, y \in R_n$ . Hence

$$\begin{split} &\left(5\right) \quad \left| \exp\left(\beta \, |y|^{2b/(2b-1)}\right) \int\limits_{R_{n}} Z_{ij}(t, x-y; \ 0, y) \left[\varphi(x) - \varphi(y)\right] dx \right| \\ &\leqslant C \left\| \exp\left(\beta \, |y|^{2b/(2b-1)}\right) \varphi(y) \right\|_{L^{\infty}} t^{-n/2b} \int\limits_{R_{n}} \exp\left[ -c \left(\frac{|x-y|^{2b}}{t}\right)^{1/(2b-1)}\right] dx + \\ &+ C t^{-n/2b} \int\limits_{R_{n}} \exp\left[ -(c-\varepsilon) \left(\frac{|x-y|^{2b}}{t}\right)^{1/(2b-1)}\right] dx \left\| \varphi(x) \exp\left(\beta_{1} \, |x|^{2b/(2b-1)}\right) \right\|_{L^{\infty}} \end{split}$$

for  $0 < t \le a_1$ . The estimate (5) and Lebesgue's dominated convergence theorem applied to  $\mu_j$  show that  $\lim_{t\to 0} J_2 = 0$ . The integral  $J_3$  can be estimated in a similar way, because

$$|R_{ij}(t, x; 0, y)| \leqslant Ct^{-(n-a)/2b} \exp \left[-c\left(\frac{|x-y|^{2b}}{t}\right)^{1/(2b-1)}\right]$$

for  $x, y \in R_n$ ,  $0 < t \le T$ . Hence  $\lim_{t \to 0} J_3 = 0$ .

We can now state the main theorem of this paper:

THEOREM 1. Let  $\{u_j(t,x)\}\ (j=1,...,N)$  be a solution of the system (1) in  $(0,T]\times R_n$  such that

$$\|u_j(t,\cdot)\|_{L^p_B} \leqslant M \quad (j=1,...,N)$$

for  $0 < t \le T$ , where M is a positive constant. If  $1 , then there exist unique <math>f_j$  in  $L^p_\beta$  (j = 1, ..., N) and a positive constant  $T_1$  such that

(6) 
$$u_{i}(t, x) = \int_{R_{n}} \sum_{j=1}^{N} \Gamma_{ij}(t, x; 0, y) f_{j}(y) dy \quad (i = 1, ..., N)$$

for  $(t, x) \in (0, T_1] \times R_n$ . If p = 1, then there exist unique measures  $\mu_j$  (j = 1, ..., N) such that

and

(8) 
$$u_i(t,x) = \int_{R_n} \sum_{j=1}^N \Gamma_{ij}(t,x; 0, y) \mu_j(dy) \quad (i = 1, ..., N)$$

for  $(t, x) \in (0, T_1] \times R_n$ .

Proof. By the assumption

$$\left\{u_i\left(\frac{1}{k}, x\right) \exp\left(-\beta |x|^{2b/(2b-1)}\right), \ k=1, 2, \ldots\right\} \quad (i=1, \ldots, N)$$

is bounded in  $L^p(R_n)$  (p>1), and hence there is a subsequence  $\{k_s\}$  such that

$$\begin{split} \lim_{s \to \infty} \int\limits_{R_n} u_i \left( \frac{1}{k_s}, y \right) \exp\left( -\beta |y|^{2b/(2b-1)} \right) g_i(y) \, dy \\ &= \int\limits_{R_n} f_i(y) \exp\left( -\beta |y|^{2b/(2b-1)} \right) g_i(y) \, dy \end{split}$$

for each  $g_i \in L^{p'}(R_n)$ . It follows from the estimate (2) that there exists a  $T_1(T_1 \leq T)$  such that  $\Gamma_{ij}(t, x; 0, y) \exp(\beta |y|^{2b/(2b-1)})$  is in  $L^{p'}$  as a function of y for all  $0 < t \leq T_1$ . Therefore

(9) 
$$\lim_{s\to\infty}\int_{R_n}\Gamma_{ij}(t,x;0,y)u_j\left(\frac{1}{k_s},y\right)dy=\int_{R_n}\Gamma_{ij}(t,x;0,y)f_j(y)dy.$$

By the uniqueness theorem for the Cauchy problem ([15], chapter 3) we have

$$u_i(t,x) = \int\limits_{R_n} \sum\limits_{j=1}^N \Gamma_{ij} \left(t,x; \frac{1}{k_s},y\right) u_j \left(\frac{1}{k_s},y\right) dy \quad (i=1,\ldots,N)$$

for  $(t, x) \in (1/k_s, T_1] \times R_n$ .

Fix  $(t, x) \in (0, T_1] \times R_n$ . We may assume that  $1/k_s \leqslant t/2$ . Consider the difference

$$\begin{split} u_{i}(t,x) &- \int_{R_{n}} \sum_{j=1}^{N} \Gamma_{ij}(t,x;\ 0,\ y) f_{j}(y) \, dy \\ &= \left[ \int_{R_{n}} \sum_{j=1}^{N} \Gamma_{ij} \left( t,x;\ \frac{1}{k_{s}},y \right) u_{j} \left( \frac{1}{k_{s}},y \right) dy - \int_{R_{n}} \sum_{j=1}^{N} \Gamma_{ij}(t,x;\ 0,y) u_{j} \left( \frac{1}{k_{s}},y \right) dy \right] + \\ &+ \left[ \int_{R_{n}} \sum_{j=1}^{N} \Gamma_{ij}(t,x;\ 0,y) u_{j} \left( \frac{1}{k_{s}},y \right) dy - \int_{R_{n}} \sum_{j=1}^{N} \Gamma_{ij}(t,x;\ 0,y) f_{j}(y) \, dy \right] \\ &= J_{1} + J_{2}. \end{split}$$

It suffices to prove  $\lim_{s\to\infty} J_i=0$ . It follows from (9) that  $\lim_{s\to\infty} J_2=0$ . For fixed  $x\in R_n$  and any  $\varepsilon>0$  choose a compact set  $K\subset R_n$  such that

(10) 
$$\int\limits_{R_{n}-K} |\Gamma_{ij}(t, x; 0, y)|^{p'} \exp(p'\beta |y|^{2b/(2b-1)}) dy \leqslant \varepsilon,$$

$$\begin{split} &(11) \qquad \int\limits_{R_{n}-K} \left| \varGamma_{ij} \left( t , \, x ; \, \frac{1}{k_{s}} , \, y \right) \right|^{p'} \exp (p' \beta \, |y|^{2b/(2b-1)}) \, dy \\ &\leqslant C \left( t - \frac{1}{k_{s}} \right)^{-n/2b} \int\limits_{R_{n}-K} \exp \left[ -c \left( \frac{|x-y|^{2b}}{t-1/k_{s}} \right)^{1/(2b-1)} \right] \exp (p' \beta \, |y|^{2b/(2b-1)}) \, dy \\ &\leqslant C \cdot 2^{n/2b} \int\limits_{R_{n}-K} t^{-n/2b} \exp \left[ -c \left( \frac{|x-y|^{2b}}{t} \right)^{1/(2b-1)} \right] \exp (p' \beta \, |y|^{2b/(2b-1)}) \, dy \leqslant \varepsilon \, . \end{split}$$

Note that

(12) 
$$\lim_{s\to\infty} \Gamma_{ij}\left(t,\,x;\,\frac{1}{k_s},\,y\right) = \Gamma_{ij}(t,\,x;\,0,\,y)$$

uniformly for  $y \in K$ . By Hölder's inequality we obtain

$$egin{aligned} |J_1| \leqslant & \sum_{j=1}^N \left\| u_j \left( rac{1}{k_s}, \; \cdot 
ight) 
ight\|_{L^p_eta} \left[ \int\limits_{R_n} \left| \; arGamma_{ij} \left( t, \, x; \; rac{1}{k_s}, \, y 
ight) - arGamma_{ij} (t, \, x; \; 0, \, y) 
ight|^{p'} imes \\ & imes \exp \left( p' \, eta \, |y|^{2b/(2b-1)} 
ight) dy 
ight]^{1/p'} \ \leqslant & M \sum_{j=1}^N \! \left[ \int\limits_{R_n-K} \left| \; arGamma_{ij} \left( t, \, x; \; rac{1}{k_s}, \, y 
ight) - arGamma_{ij} (t, \, x; \; 0, \, y) 
ight|^{p'} \! \exp \left( p' \, eta \, |y|^{2b/(2b-1)} 
ight) dy + \\ & + \int\limits_K \left| \; arGamma_{ij} \left( t, \, x; \; rac{1}{k_s}, \, y 
ight) - arGamma_{ij} (t, \, x; \; 0, \, y) 
ight|^{p'} \! \exp \left( p' \, eta \, |y|^{2b/(2b-1)} 
ight) dy 
ight]^{1/p'}. \end{aligned}$$

Combining this with (10), (11) and (12) we find that  $\lim_{s\to\infty} J_1 = 0$ . The uniqueness of  $f_j$  follows from Theorem 2. When p = 1, the proof is identical, except that now there are measures  $\mu_j$  satisfying (7). The uniqueness of  $\mu_i$  is a consequence of Lemma 1.

Remark. Denote by  $T^*$  the least upper bound of such  $T_1$  that formula (6) holds true in the set  $(0, T_1] \times R_n$ . We prove that in the case  $T^* < T$  formula (6) is not satisfied for  $(t, x) = (T^*, x)$ . Suppose the contrary;

formula (6) holds true for  $(t, x) = (T^*, x)$ . It follows from the uniqueness theorem ([15], chapter 3) that there exists a positive  $\varrho$  such that

$$u_i(t,x) = \int\limits_{R_n} \sum_{j=1}^N \Gamma_{ij}(t,x; T^*, y) u_j(T^*, y) dy$$
  $(i = 1, ..., N)$ 

for  $(t, x) \in (T^*, T^* + \varrho] \times R_n$ . By Kolmogorov's identity ([15], p. 94) we have

$$u_{i}(t, x) = \int_{R_{n}}^{N} \sum_{j=1}^{N} \Gamma_{ij}(t, x; T^{*}, y) \Big[ \int_{R_{n}}^{N} \sum_{k=1}^{N} \Gamma_{jk}(T^{*}, y; 0, z) f_{k}(z) dz \Big] dy$$

$$= \int_{R_{n}}^{N} \sum_{k=1}^{N} \Big[ \int_{R_{n}}^{N} \sum_{j=1}^{N} \Gamma_{ij}(t, x; T^{*}, y) \Gamma_{jk}(T^{*}, y; 0, z) dy \Big] f_{k}(z) dz$$

$$= \int_{R_{n}}^{N} \sum_{k=1}^{N} \Gamma_{ik}(t, x; 0, z) f_{k}(z) dz$$

for  $(t,x) \in (T^*, T^* + \varrho] \times R_n$ , which contradicts the definition of  $T^*$ THEOREM 2. If  $f_j \in L^p_\beta(R_n)$  (j = 1, ..., N) for  $1 , then for almost all <math>x \in R_n$ 

$$\lim_{\substack{|z-x|<\gamma t^{1/2b}\\t\to 0}} u_i(t,z) = f_i(x) \qquad (i=1,\ldots,N),$$

where

$$u_i(t, x) = \int_{R_n} \sum_{j=1}^{N} \Gamma_{ij}(t, x; 0, y) f_j(y) dy$$
  $(i = 1, ..., N)$ 

and  $\gamma$  is a positive constant.

If  $\mu_i$   $(\bar{j}=1,...,N)$  are complex measures satisfying (7), then

$$\lim_{|z-x|<\gamma t^{1/2b}}u_i(t,z)=\mu_i'(x) \qquad (i=1,\ldots,N),$$

where

$$\mu'_i(x) = \lim_{a \to 0} \frac{\mu_i(w; |w-x| < a)}{|(w; |w-x| < a)|}$$

and

$$u_i(t, x) = \int\limits_{R_n} \sum_{j=1}^N \Gamma_{ij}(t, x; 0, y) \mu_j(dy) \quad (i = 1, ..., N)$$

(|(w; |w-x| < a)| is the Lebesgue measure of the ball (w; |w-x| < a)).

Proof. It suffices to prove the second part of theorem. Write Lebesgue decomposition of the measure

$$\mu_{j}(dy) = g_{j}(y)dy + v_{j}(dy) \quad (j = 1, ..., N),$$

where the functions  $g_j$  belong (locally) to  $L^1$  and  $v_j$  is singular with respect to the Lebesgue measure. It is well-known that

$$\lim_{a\to 0} \frac{1}{a^n} \int_{|y-x|< a} [|g_j(y)-g_j(x)| \, dy + |\nu_j| \, (dy)] = 0 \qquad (j=1,\ldots,N)$$

almost everywhere in  $R_n$ . Hence for fixed x and for any  $\varepsilon > 0$  there exists a number  $\delta > 0$  such that

(13) 
$$a^{-n} \int_{|y-x| < a} [|g_j(y) - g_j(x)| dy + |\nu_j| (dy)] < \varepsilon \quad (j = 1, ..., N)$$

for  $0 < a \le 2\delta$ . For each  $0 < t < \min(2\delta, T)$  choose a non-negative integer P(t) such that

$$2^{P-1} \nu t^{1/2b} \leqslant \delta < 2^P \nu t^{1/2b}$$
.

It is clear that

$$\begin{split} & \left| u_i(t,z) - \int\limits_{R_n} \sum\limits_{j=1}^N \Gamma_{ij}(t,z;\;0,y) g_j(x) dy \right| \\ \leqslant & \sum\limits_{j=1}^N \int\limits_{|y-x| < 2\gamma t^{1/2b}} |\Gamma_{ij}(t,z;\;0,y)| [|g_j(y) - g_j(x)| \, dy + |v_j| (dy)] + \\ & + \sum\limits_{l=2}^P \int\limits_{2^{l-1}\gamma t^{1/2b} \leqslant |y-x| < 2^{l}\gamma t^{1/2b}} \sum\limits_{j=1}^N |\Gamma_{ij}(t,z;\;0,y)| [|g_j(y) - g_j(x)| \, dy + |v_j| (dy)] + \\ & + \sum\limits_{j=1}^N \int\limits_{|y-x| \ge \delta} |\Gamma_{ij}(t,z;\;0,y)| \, |g_j(x)| \, dy + \\ & + \sum\limits_{j=1}^N \int\limits_{|y-x| \ge \delta} |\Gamma_{ij}(t,z;\;0,y)| \, |\mu_j| (dy) = J_1 + J_2 + J_3 + J_4. \end{split}$$

In view of (13) we have

$$egin{aligned} J_1 \leqslant C \int\limits_{|y-x|<2\gamma t^{1/2b}} t^{-n/2b} \expigg[-cigg(rac{|y-x|^{2b}}{t}igg)^{1/(2b-1)}igg] \sum_{j=1}^N |g_j(y)-g_j(x)|\,dy + |
u_j|\,(dy) \ \leqslant NCarepsilon(2\gamma)^n \end{aligned}$$

Notice that the inequalities  $|z-x| \leqslant \gamma t^{1/2b}$  and  $|x-y| \geqslant 2^{l-1} \gamma t^{1/2b}$  mply  $|z-y| \geqslant 2^{(l-2)} \gamma t^{1/2b}$  for  $l=2,\ldots,P$ , hence

$$egin{align} {J_2} &= \sum_{l=2}^P NCarepsilon \cdot 2^{ln} \gamma^n \exp{[\, -c(2^{l-2}\gamma)^{2b/(2b-1)}]} \ &\leqslant CNarepsilon \sum_{l=2}^\infty 2^{ln} \gamma^n \exp{[\, -c(2^{l-2}\gamma)^{2b/(2b-1)}]}. \end{split}$$

Since  $|z-x|<\gamma t^{1/2b}$  and  $|y-x|\geqslant \delta$ , we can assume that  $|z-y|\geqslant \delta/2$  for t sufficiently small, and hence

$$J_3 \leqslant \sum_{j=1}^N |g_j(x)| \exp\bigg[-\frac{c}{2} \bigg(\frac{\delta^{2b}}{2^{2b}t}\bigg)^{1/(2b-1)}\bigg] t^{-n/2b} \int\limits_{R_n} \exp\bigg[-\frac{c}{2} \bigg(\frac{|z-y|^{2b}}{t}\bigg)^{1/(2b-1)}\bigg] dy \,.$$

Hence  $\lim_{t\to 0} J_3 = 0$ . In a similar way we have

$$egin{aligned} J_4 \leqslant C t^{-n/2b} \expigg[ -rac{c}{2} \left(rac{\delta^{2b}}{2^{2b}t}
ight)^{1/(2b-1)} igg] \int\limits_{R_n} \expigg[ -rac{c}{2} \left(rac{|z-y|^{2b}}{t}
ight)^{1/(2b-1)} + \ & +eta \, |y|^{2b/(2b-1)} igg] \expig(-eta \, |y|^{2b/(2b-1)}ig) |\mu_j| (dy) \,. \end{aligned}$$

It is easy to show that there exists a positive constant  $\beta'$  such that

$$\exp\left[-\frac{c}{2}\left(\frac{|z-y|^{2b}}{t}\right)^{1/(2b-1)} + \beta |y|^{2b/(2b-1)}\right] \leqslant \exp\left(\beta' |z|^{2b/(2b-1)}\right)$$

for  $z, y \in R_n$  and for t sufficiently small, hence  $\lim_{t\to 0} J_4 = 0$ . Noting finally that

$$\lim_{t\to 0}\int_{R_n}\sum_{j=1}^N \Gamma_{ij}(t,z; 0,y)g_j(x)dy = \mu'_i(x) = g_i(x),$$

we obtain

$$\lim_{\substack{|z-x|<\gamma t^{1/2b}\\t\to 0}} u_i(t,z) = u'_i(x).$$

3. Application to special parabolic systems. Consider a parabolic system of the form

$$(14) \sum_{i,j=1}^{n} a_{ij}^{k}(t,x) \frac{\partial^{2} u_{k}}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} b_{i}^{k}(t,x) \frac{\partial u_{k}}{\partial x_{i}} + \sum_{l=1}^{N} c_{l}^{k}(t,x) u_{l} - \frac{\partial u_{k}}{\partial t} = 0$$

$$(k = 1, ..., N),$$

where the k-th equation contains derivatives of only one unknown function.

Throughout this section we assume

I'. The coefficients  $a_{ij}^k$ ,  $b_i^k$ ,  $c_l^k$  and derivatives

$$rac{\partial}{\partial x_i} a_{ij}^k, \quad rac{\partial^2}{\partial x_i \partial x_j} a_{ij}^k, \quad rac{\partial}{\partial x_i} b_i^k$$

are continuous bounded functions in  $[0, T] \times R_n$  and Hölder continuous in x uniformly with respect to (t, x) in  $[0, T] \times R_n$ ; additionally the princi-

pal coefficients are continuous in t uniformly with respect to (t, x) in  $[0, T] \times R_n$ .

II'. There exists a positive constant  $\varkappa$  such that for any real vector  $\xi \in R_n$ 

$$\sum_{i,j=1}^N a_{ij}^k(t,x)\,\xi_i\,\xi_j \geqslant arkappa\,|\xi|^2 \hspace{0.5cm} (k=1,\ldots,N)$$

for all  $(t, x) \in [0, T] \times R_n$ .

III'.  $c_k^l(t,x) \geqslant 0$  for all  $(t,x) \in [0,T] \times R_n$  and  $l \neq k (l, k = 1, ..., N)$ .

It is clear that condition II' is equivalent to parabolicity in the sense of Petrovskii.

It follows [10] from III' that  $\Gamma_{ij}(t, x; \tau, y) \ge 0$  (i, j = 1, ..., N) for (t, x),  $(\tau, y) \in [0, T] \times R_n$   $(\tau < t)$ . In paper [10] it is shown that all elements  $\Gamma_{ij}(t, x; \tau, y)$  of the fundamental matrix of the system (1) (with b = 1) are non-negative if and only if

$$A_k^{ij}(t,x)=0 ext{ in } [0,T] imes R_n ext{ for } |k|=1,2 ext{ and } i
eq j,$$
  $A_0^{ij}(t,x)\geqslant 0 ext{ in } [0,T] imes R_n ext{ for } i
eq j.$ 

In this section we have always defined the norms  $\|\cdot\|_{L^p_R}$  by

$$\|f\|_{L^p_{eta}} = \left[\int\limits_{R_n} \exp\left(-peta|x|^2
ight)|f(x)|^p dx
ight]^{\!1/p} \quad ext{ if } 1\leqslant p < \infty$$

and

$$||f||_{L_p^{\infty}} = \operatorname{ess\,sup}\left[\exp\left(-\beta |x|^2\right)|f(x)|\right].$$

We shall extend Theorem 1 to the solutions of (14) satisfying the growth conditions

$$\|u_j^-(t,\,\cdot)\|_{L^p_{eta}} \leqslant M \quad ext{ for } 0 < t \leqslant T \ (j=1,\,\ldots,\,N),$$

where  $u_i^-(t,x) = \max[0, -u(t,x)]$ . We begin with the following lemma:

LEMMA 2. Let  $\{u_j(t, x)\}$  (j = 1, ..., N) be a solution of (14) in  $(0, T] \times R_n$  such that

$$\|u_j^-(t,\,\cdot)\|_{L^{\mathcal{D}}_eta}\leqslant M \hspace{0.5cm}(j=1,...,N)$$

for  $0 < t \leqslant T$ . Then there exists a positive constant  $\delta_1$  such that

$$u_i(t, x) + \int\limits_{R_n} \sum_{j=1}^N \Gamma_{ij}(t, x; \tau, y) u_j^-(\tau, y) dy \geqslant 0 \quad (i = 1, ..., N)$$

for  $(t, x) \in (\tau, \min(T, \tau + \delta_1)] \times R_n$ , where  $0 < \tau < T$ .

Proof. Introduce the function

$$w_i(t,x) = u_i^+(t,x) - u_i^-(t,x) + \int\limits_{R_n} \sum_{j=1}^N \Gamma_{ij}(t,x; \, \tau,y) u_j^-(\tau,y) dy$$

$$(i = 1, ..., N).$$

It is clear that there exists a positive constant  $\delta_1$  such that  $\{w_i\}$   $(i=1,\ldots,N)$  satisfies the system (14) in  $(\tau,\min(T,\tau+\delta_1)]\times R_n$ . Note that

$$w_i^-(t, x) \leqslant u_i^-(t, x) \quad (i = 1, ..., N),$$

which implies that the inequality  $||w_i^-(t,\cdot)||_{L^p_\beta} \leq M$   $(i=1,\ldots,N)$  holds for  $t \in (\tau, \min(\tau + \delta_1, T)]$ .

Since

$$\lim_{t \to \tau} w_j(t, x) = u_j^+(\tau, x) \ge 0 \quad (j = 1, ..., N)$$

in  $R_n$ , it follows from the maximum principle (Theorem 5 of [12]) that  $w_j(t,x) \ge 0$   $(j=1,\ldots,N)$  in  $(\tau,\min(\tau+\delta_1,T)] \times R_n$ .

Now with the aid of Lemma 3 we can generalize Theorem 1:

THEOREM 3. Let  $\{u_j(t,x)\}$   $(j=1,\ldots,N)$  be a solution of (14) in  $(0,T]\times R_n$  such that

$$\|u_{j}^{-}(t,\cdot)\|_{L_{B}^{p}} \leqslant M \quad (j=1,...,N)$$

for  $0 < t \leqslant T$ , where  $1 \leqslant p \leqslant \infty$ . Then there are  $f_j \in L^p_\beta$  (j = 1, ..., N) such that

$$u_i(t, x) + \int\limits_{R_n} \sum_{j=1}^N \Gamma_{ij}(t, x; 0, y) f_j(y) dy \ge 0 \quad (j = 1, ..., N)$$

in  $(0, \delta_1] \times R_n$  with the usual modification when p = 1.

Proof. We know that the sets

$$\left\{u_i^-\left(\frac{1}{k},.\right),\ k=1,\ldots\right\} \quad (i=1,\ldots,N)$$

are bounded in  $L^p_{\beta}$ . There are  $f_j \in L^p_{\beta}$  (j = 1, ..., N) and a subsequence  $1/k_s$  such that, for any  $g_i \in L^{p'}_{-\beta}$ ,

$$\lim_{s\to\infty}\int\limits_{R_n}u_j^-\left(\frac{1}{k_s},y\right)g_j(y)dy=\int\limits_{R_n}f_j(y)g_j(y)dy \qquad (j=1,\ldots,N).$$

It is clear that  $\Gamma_{ij}(t, x; 0, y)$  is in  $L^{p'}_{-\beta}$ . Hence

(15) 
$$\lim_{s \to \infty} \int_{R_n} \sum_{j=1}^{N} \Gamma_{ij}(t, x; 0, y) u_j^- \left(\frac{1}{k_s}, y\right) dy$$
$$= \int_{R_n} \sum_{j=1}^{N} \Gamma_{ij}(t, x; 0, y) f_j(y) dy.$$

From Lemma 2 it follows that

$$u_i(t, x) + \int\limits_{R_s} \sum_{j=1}^{N} \Gamma_{ij} \left(t, x; \frac{1}{k_s}, y\right) u_j^- \left(\frac{1}{k_s}, y\right) dy \geqslant 0 \quad (i = 1, ..., N),$$

so that it suffices to prove that

$$\lim_{s\to\infty}\int\limits_{R_n}\sum_{j=1}^N\Gamma_{ij}\bigg(t,x;\ \frac{1}{k_s},y\bigg)u_j^-\bigg(\frac{1}{k_s},y\bigg)dy = \int\limits_{R_n}\sum_{j=1}^N\Gamma_{ij}(t,x;\ 0,y)f_j(y)dy$$

$$(i=1,\ldots,N).$$

Write

$$\begin{split} \int\limits_{R_{n}} \sum_{j=1}^{N} \Gamma_{ij} \Big( t, \, x; \, \frac{1}{k_{s}}, \, y \Big) u_{j}^{-} \Big( \frac{1}{k_{s}}, \, y \Big) dy - \int\limits_{R_{n}} \sum_{j=1}^{N} \Gamma_{ij} (t, \, x; \, 0, \, y) f_{j}(y) \, dy \\ = & \left[ \int\limits_{R_{n}} \sum_{j=1}^{N} \Gamma_{ij} \Big( t, \, x; \, \frac{1}{k_{s}}, \, y \Big) u_{j}^{-} \Big( \frac{1}{k_{s}}, \, y \Big) dy - \right. \\ & \left. - \int\limits_{R_{n}} \sum_{j=1}^{N} \Gamma_{ij} (t, \, x; \, 0, \, y) u_{j}^{-} \Big( \frac{1}{k_{s}}, \, y \Big) dy \Big] + \right. \\ & \left. + \left[ \int\limits_{R_{n}} \sum_{j=1}^{N} \Gamma_{ij} (t, \, x; \, 0, \, y) u_{j}^{-} \Big( \frac{1}{k_{s}}, \, y \Big) dy - \right. \\ & \left. - \int\limits_{R_{n}} \sum_{j=1}^{N} \Gamma_{ij} (t, \, x; \, 0, \, y) f_{j}(y) \, dy \right] = J_{1} + J_{2}. \end{split}$$

By (15) we get  $\lim_{s\to\infty} J_2=0$ . Using the method of the proof of Theorem 1 one can show that  $\lim_{s\to\infty} J_1=0$ .

In paper [11] a representation theorem for non-negative solutions is proved in the form of

(16) 
$$u_i(t,x) = \int_{R_n} \sum_{j=0}^N \Gamma_{ij}(t,x; 0,y) \mu_j(dy) \quad (j=1,\ldots,N),$$

where  $\mu_i$  are non-negative measures satisfying condition

(17) 
$$\int_{R_n} \exp(-\beta |x|^2) \mu_j(dx) < \infty \quad (j = 1, ..., N).$$

As an immediate consequence of Theorem 3 and (16) we obtain COROLLARY 1. Let  $\{u_j(t,x)\}\ (j=1,\ldots,N)$  be a solution of (14) in  $(0,T]\times R_n$  such that

$$\|u_i^-(t,\,\cdot)\|_{L^p}\leqslant M \hspace{0.5cm}(j=1,\ldots,N)$$

for  $0 < t \leqslant T$ . Then there are measure  $\mu_j$  satisfying (17) and  $f_j \in L^p_\beta$  (j = 1, ..., N) if 1 with the usual modification when <math>p = 1, such that

(18) 
$$u_i(t,x) = \int\limits_{R_n} \sum_{j=1}^N \Gamma_{ij}(t,x;0,y) \mu_j(dy) - \int\limits_{R_n} \sum_{j=1}^N \Gamma_{ij}(t,x;0,y) f_j(y) dy$$

$$(i = 1, ..., N)$$

for  $(t, x) \in (0, \delta_1] \times R_n$ .

In view of Lemma 1 and the representation (16) we can state the following corollary:

COROLLARY 2. Let  $\{u_j(t,x)\}\ (j=1,...,N)$  be a non-negative solution of (14) in  $(0,T] \times R_n$  such

$$\lim_{t\to 0}u_i(t,\cdot)=0 \qquad (i=1,\ldots,N)$$

in the topology of weak convergence of measures. Then  $u_j(t,x) = 0$  in  $(0,T] \times R_n$   $(j=1,\ldots,N)$ .

Using the representation (16) we deduce the following

COROLLARY 3. Let  $\{u_j(t,x)\}\ (j=1,\ldots,N)$  be a solution of (14) in  $(0,T] \times R_n$  such that

$$\|u_{i}^{-}(t,\cdot)\|_{L_{B}^{p}}\leqslant M \hspace{0.5cm}(i=1,...,N)$$

for  $0 < t \leq T$  and

$$\lim_{t\to 0}u_i(t,\cdot)=0 \qquad (i=1,\ldots,N)$$

in the topology of weak convergence of measures. Then  $u_j(t, x) = 0$  (j = 1, ..., N) in  $(0, T] \times R_n$ .

COROLLARY 4. Let  $\{u_j(t,x)\}\ (j=1,\ldots,N)$  be a solution of (14) in  $(0,T]\times R_n$  such that

$$\|u_j^-(t,\cdot)\|_{L^p_{\pmb{\beta}}}\leqslant M \hspace{0.5cm} (j=1,...,N)$$

for  $0 < t \le T$ , where  $1 \le p \le \infty$ . Then  $u_j$  (j = 1, ..., N) have limits almost everywhere in  $R_n$  if  $t \to 0$ .

## REFERENCES

- [1] D. G. Aronson, On initial value problem for parabolic system of differential equations, Bulletin of the American Mathematical Society 65 (1959), p. 310-318.
- [2] Uniqueness of positive solutions of second order parabolic equations, Annales Polonici Mathematici 16 (1965), p. 285-303.
- [3] Non-negative solutions of linear parabolic equations, Annali della Scuola Normale Superiore di Pisa, Scienze Fisiche e Matematiche, 22 (1968), p. 607-694.
- [4] Non-negative solutions of linear parabolic equations; An addendum, ibidem 25 (1971), p. 221-228.
- [5] and P. Besala, Parabolic equations with unbounded coefficients, Journal of Differential Equations 3 (1967), p. 1-14.
- [6] Uniqueness of positive solutions of parabolic equations with unbounded coefficients, Colloquium Mathematicum 18 (1967), p. 125-135.
- [7] P. Besala, Limitations of solutions of non-linear parabolic equations in unbounded domains, Annales Polonici Mathematici 17 (1965), p. 25-47.
- [8] W. Bodanko, Les propriétés des solutions non négatives de l'équation linéaire normale parabolique, ibidem 20 (1968), p. 107-117.
- [9] J. Chabrowski, Bemerkungen über Zeichen der Elemente der Matrix der Grundlösungen für parabolische Systeme von partiellen Differentialgleichungen zweiter Ordnung, ibidem 19 (1967), p. 287-300.
- [10] Les solutions non négatives d'un système parabolique d'équations, ibidem 19 (1967), p. 193-197.
- [11] Les propriétés des solutions non négatives d'un système parabolique d'équations, ibidem 22 (1970), p. 223-231.
- [12] Sur l'unicité du problème de Cauchy dans une classe de fonctions non bornées, ibidem 24 (1971), p. 127-135.
- [13] Certaines propriétés des solutions non négatives d'un système parabolique d'équations, ibidem 24 (1971), p. 137-143.
- [14] J. Chabrowski, Propriétés des solutions faibles non négatives de l'équation parabolique, Nagoya Mathematical Journal 39 (1970), p. 119-125.
- [15] S. D. Eidelman, Parabolic systems, Amsterdam 1969.
- [16] A. Friedman, Partial differential equations of parabolic type, Englewood Cliffs 1964.
- [17] R. Johnson, Representation theorems and Fatou theorems for second-order linear parabolic partial differential equations, Proceedings of the London Mathematical Society 23 (1971), p. 325-347.
- [18] Representation theorems for the heat equations, University of Maryland, TR 70-95, 1970.
- [19] M. Kato, On positive solutions of the heat equation, Nagoya Mathematical Journal 30 (1968), p. 203-207.

- [20] M. Krzyżański, Sur les solutions non négatives de l'équation linéaire normale parabolique, Revue Roumaine de Mathématiques Pures et Appliquées 9 (5) (1964), p. 393-408.
- [21] W. Pogorzelski, Étude de la matrice des solutions fondamentales du système parabolique d'équations aux dérivées partielles, Ricerche di Matematica 7 (1958), p. 153-185.
- [22] Propriétés des intégrales généralisées de Poisson-Weierstrass et problème de Cauchy pour un système parabolique, Annales Scientifiques de l'École Normale Supérieure 76 (1959), p. 125-149.
- [23] D. Widder, Positive temperatures on an infinite rod, Transactions of the American Mathematical Society 55 (1944), p. 85-95.

Reçu par la Rédaction le 23. 3. 1972