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REPRESENTATION THEOREMS AND FATOU THEOREMS
FOR PARABOLIC SYSTEMS IN THE SENSE OF PETROVSKII

BY

J. CHABROWSKI (KATOWICE)

Representation theorems and Fatou theorems for non-negative
classical solutions of second-order parabolic equations have been considered
in several papers. The representation theorem for non-negative solutions
of the equation of heat conduction was first proved by Widder [23] and
subsequently extended to solutions of second-order parabolic equations
with smooth coefficients by Krzyzanski [20]. Aronson and Besala [6]
and Bodanko [8] obtained Widder representation for parabolic equations
with unbounded coefficients. Properties of the non-negative weak solutions
of linear equations with discontinuous coefficients were studied by Aronson
[2]-[4]. Further extensions of representation theorems for non-negative
solutions of a special parabolic system were obtained by the author [11]-
[13]. Kato [19] derived Fatou theorem for non-negative solutions of
the equation of heat conduction by using Widder representation. These
results were extended by Johnson [17] and [18] to the class L%, which
includes non-negative solutions. In this paper a representation theorem
and the Fatou theorem are proved for the solutions of parabolic systems
of arbitrary order.

1. Preliminaries. Consider the parabolic system

j=1,...,N

—_— = )
M = D Ak,
1kl=2b

Ikl
0 uj
1...0akn

(G=1,...,N),

where the AY are functions defined on [0,T]x R,, k,, ..., k, are non-
-negative integers, k = (k,, ..., k,), and |k| = k,+...+k,.

Throughout the paper it will be assumed that the coefficients satisfy
the following conditions:

I. The principal coefficients of (1) are continuous in ¢ uniformly
with respect to (f,x)e [0, T]x R, and Hélder continuous (exponent a)
in @, uniformly with respect to (¢,2) in [0,T]x R,.
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302 J. CHABROWSKI

II. The derivatives

0

mflij(t; z) (0 [B| < [K])
are continuous bounded functions in [0, 7'] X R, and Hoélder continuous
(exponent a) in x, uniformly with respect to (¢, ) in bounded subsets
of [0,TIxR,.

ITI. The system (1) is uniformly parabolic in the sense of Petrovskii,
i. e. the roots 4, of the polynomial

kel =2b

det [2 AT (t, @) ($E,)" ... (i&n)k"—é,,}.]

r,8=1,...,.N
satisfy the inequality

max sup{Rei;(¢, #; §)} < -4,
j=1,...,N |gl=1

where J is a positive constant.

Under these hypotheses, the fundamental matrix {I,(¢, z; 7, y)}
(4,5 =1,..., N) for the system (1) exists and satisfies the estimate

|w _ y|2b )l/(2b—1)]

@) Tyl 7, 91 < Ol—0 " exp | — o 22
(t,J =1,...,N)

for z,ye R,, 0<t <t<T, where c and C are positive constants ([21], [15],
p. 73, [16], chap. 9). Notice that from our assumptions it follows that
there exists a fundamental matrix for the adjoint system, so uniqueness
theorems for the Cauchy problem can be applied ([15], chap. 3).

The function space that enters in the theorems is the set of all meas-
urable functions f defined on R,, such that

an |f(@)Pexp[ —pp laP®-V]dr < 0, 1<p< oo,

where the parameter § is non-negative. We denote this space by L} and
define the norm

"f”Lg = {flf(w)l"exp[—pﬁ |w|2b/(2b—l)]dw}llp’ 1<p< .
Rn
In the case p = oo, we introduce the norm
Ifll oo = esssup|f()|exp [ —Ba®>~V]
B Rn ’

and the set of all measurable functions f for which ||f ||L°° < oo is denoted
by Lj. b
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2. Representation theorems and Fatou property. Before proving the
main theorem, let us establish the following

LEMMA 1. Let {u;} (j =1,..., N) be measures such that

[ exp(—B12l®®Y) |y (dw) < oo (j =1,..., N).
R .
Then

11131J2P,,t 25 0, y)p(dy) =pm (i =1,...,N)
=
in the topology of weak convergence of measures.

In the sequel the word measure will always mean a Borel measure
on R,.

Proof. The proof is an adaptation of Johnson’s method [17]. Let
¢ be of class C*(R,) with compact support. Using the decomposition of
I'; we get ([16], chapter 9, section 4)

N
f[fzfv(t,w; 0, y)ﬂj(dy)]tp(w)dm
R, Ry j=1

N

= wi(dy) [Zy(t, 2—y; 0, y)p(y)do+

i=1 R,

J mi(ay) fZﬁ(t 213 0,9)[p(@)—p(y)]da+
R

el
S

'Mz

J

Mz

[ wi(dy) fRi,(t 7; 0,y)p(@)de = J;+J,+Jy,
j 1 R,

where
Ty(t, 2; 0, )
t N
=Zy(t,®—y; 0, y)+ [do [ D' Zy(t,0—2; 0, 2)Py(0,2; 0, y)dz
0 Ry k=
=Z~.’j(taw_3/; 0, ?/)+Rij(t7m; 0,y)
and {Z;(t,r—z2; 7,¥y)} (¢,j =1,...,N) is the fundamental solution
of the system (with y fixed)

ji=1,...,N
[ k|
ou; " 0" u;

— A
ot 2 e Y) G ok

|k|=2b

and satisfies the estimate

_12b\1/(2b—1)
) 12yt a—z i< OCu—nexp| o[ HZ) ]
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for z,ye R,, 0 <7< t<T. From the uniqueness theorem [1] for the
Cauchy problem it follows that

(4) [2(t, o—2; v, y)dw = 8y (5,5 =1,..., V).
By

To evaluate the integral J, we note that for any positive numbers
p and ee (0, ¢) there exist positive numbers 8, and a, such that

€
— i@y 1@ _y POIE=1) g 1q[20IE =) < g |2bi(zb1)
1

for z,ye R,. Hence

(5) |exp(Bly*Y) f Zy(t, 2—y; 0,9)[p(x)—p(y)]do
I

. _ 2b l/(2b_—])
< Cllexp(Bly™** V)@ ()l oot f oxPp [_c(lw tyI ) ] d+
. A

lm—?/|2b 1/(2b—-1)
0 [oxp| —te—o(EZEE) T dotp@expipalorie-ny,
R l
for 0 < t< a,. The estimate (5) and Lebesgue’s dominated convergence
theorem applied to x; show that limJ, = 0. The integral J, can be esti-

t—0
mated in a similar way, because

__ay12b\1/(2b—1
|By(t, @5 0, )l < Ot‘("‘“”""’exp["c (lw—tyl—) ]

for z,ye R,, 0<t<T. Hence limJ,; = 0.

i—0
We can now state the main theorem of this paper:

THEOREM 1. Let {u;(t, z)} (j =1, ..., N) be a solution of the system (1)
in (0, T]X R, such that

sty Vg < M (G =150, )

for 0 <t << T, where M is a positive constant. If 1 < p < oo, then there exist
unique f; in L} (j = 1,..., N) and a positive constant T, such that

N

(6) u(t,2) = [ M Iy(t, 25 0, 9)f(y)dy* (i =1,...,N)

Ry j=1

for (t,x)e(0,T,]1xXR,. If p =1, then there ewist umique measures u,
(j =1,..., N) such that

(1) [ exp(—Blaf D) |yl(da) < oo (j=1,..., )

Ky,
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and

N
(8) w(t, @) = [ Y Ty(t, 5 0, y)u(dy) (i

R, j=1

I
(Y
=

for (t,2)e(0,T,1X R,.
Proof. By the assumption

{ui(%,w)exp(—ﬁlwlzb/(ﬂ’"”), k=1,2, } (¢t=1,...,N)

is bounded in L?(R,) (p > 1), and hence there is a subsequence {k,} such
that

. 1 . _
lim f Uy (k—,y) exp( —B ly|®/e g, (y)dy
8—>00 (]

= [ ftw exp(—BlyI*>-D)g,(y)dy
R

for each g;¢ L' (R,). It follows from the estimate (2) that there exists
a T, (T, < T) such that I';(t, z; 0, y)exp(B|y|**/®Y) is in L* as a function
of y for all 0 <t < T,. Therefore

1
(9) lim (t Ty ’y)“j(k ’?/) d:'/ = f f(t a", ’ y)f;(y)dy.

8—00

By the uniqueness theorem for the Cauchy problem ([15], chapter 3)
we have

u;(ty x) = fZFiy(t T k, 1?/) (k ay)dy (¢=1,...,N)

for (t,x)e (1/k,, T,1X R,,.
Fix (t,2)e(0,T,]x R,. We may assume that 1/k,\t/2 Consider
the difference

N
ult, @)= [ D Ty(t, 25 0, 9)f(9)d
R, 321

3 1 1 3 1
=UZP"(t’”; k_’y)“"(%—’-”)dy"fz'ﬂf(t’w; O,y)uj(k—,y)dy]+
[fZ i(t) @5 7?/)“1(10 7?/)d?/_ fZPﬁ(t x; ,y)fj(y)dy]

= J1+Ja
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It suffices to prove lim J; = 0. It follows from (9) that limJ, = 0.

8—>00 8—>00

For fixed z¢ R, and any ¢ > 0 choose a compact set K < R, such that
(10) [1T5(t, ;5 0, 9)[" exp(p’Bly P> V) dy < e,
R,—K

p

exp(p’ Bly* -V dy

1
(11) f \Pz’j'(taw; k—’?/}

R,-K

- O(t 1 )—nlzb f ox - c(lw"‘y|2b)ll(zb_l)]ex (0B l21;/(2!:—1))d
< . 4 I =y p(p'Bly y

n
|.’D—y|2b 1/(2b-1) »
< c2m f t‘"’””exp[—c(———t ) ]exp(zr"/filylﬂ’"2 Dydy<e.
R,-K

Note that

. 1
(12) hmrij(tywi k_’y) = Fij”w’”? 0,y)

8§—00
uniformly for ye K. By Holder’s inequality we obtain

“ (73‘ ) E [Rf

»
X

1
I'ij(t’m; k—’i'/) —I';(t, z; 0,y)
8

N
1] <Z

J=1

1/p’
X exp (p’ B ly|*/E-D) dy]

»
exp(p’ By -1y dy +

<MZN( {

-R,‘.—'- K

, 1
Fij(t1 Z; 76—’ ?/)"Fij('t’ z; 0,9)
8

p’ 1/p’
eXP(p'ﬂlyI“”‘“"”)dy] -

j
1
+f r;\t, »; k—,@/ —Ty(tyz; 0, y)
K 8

Combining this with (10), (11) and (12) we find that limJ, = 0. The

8—00

uniqueness of f; follows from Theorem 2. When p = 1, the proof is identical,
except that now there are measures u; satisfying (7). The uniqueness of
u; 18 a consequence of Lemma 1.

Remark. Denote by T* the least upper bound of such T, that formula
(6) holds true in the set (0, T,] x R,. We prove that in the case T* < T
formula (6) is not satisfied for (¢, ) = (T*, ). Suppose the contrary;
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formula (6) holds true for (¢, ) = (T*, ). It follows from the uniqueness
theorem ([15], chapter 3) that there exists a positive ¢ such that

N
u(t, @) = [ Y Iy(t, o5 T, 9)uy(T* y)dy (6 =1,..., N)
R, j=1

for (¢, a)e(T*, T* +0]x R,. By Kolmogorov’s identity ([15], p. 94)
we have

N N
(4, @) = f D Lytya; T y)| [ X TulT*, 95 0, 2)file) de] dy
j=1 Ry, k=1

= fZ[fZ‘ 5t 05 T, ) T(T*, 95 0, 2)dy] fule) de

= | er,,(t,w; 0, 2)f(2)de
Ry, k=1

for (¢,2)e(T*, T*+0]x R,, which contradicts the definition of T*

THEOREM 2. If f,e L(R,) (j =1,...,N) for 1< p < oo, then for
almost all ze R,

lim bui(t’z) =fi(®) (@ =1,...,N),

Nz—z|<pt]
t—0
where
. N
wi(t,®) = [ D ylty o5 0,9)fi(y)dy (i =1,..., )
Ry, j=1

and y t8 a positive constant.
If wj (j =1,...,N) are complex measures satisfying (7), then

lim  u(t, 2) =l";(w) (t=1,...,N),

je—x|<yt}/2
t—0
where
w;, w—rl<<a
I(w’ lw—2| < a’)i
and

N
wit,a) = [ D' Ty(t, 25 0,9)us(dy) (i =1,..., N)

Ry j=1

(|(w; lw— x| < a)| i8 the Lebesgue measure of the ball (w; |w—ux| < a)).
Proof. It suffices to prove the second part of theorem. Write Lebesgue
decomposition of the measure

pi(dy) = g;(y)dy +»(dy) (j =1,...,N),
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where the functions g; belong (locally) to L' and »; is singular with respect
to the Lebesgue measure. It is well-known that

1
im— [ Ug@)—g@ldy+hl@] =0 (G =1,..., )

a—0
ly—z|<a

almost everywhere in R, . Hence for fixed x and for any ¢ > 0 there exists
a number 6 > 0 such that

(13) o™ [ [g) —g@)dy+ul@l<e (G=1,..,N)

ly—zi<a
for 0 < a < 24. For each 0 < t < min(26, T') choose a non-negative integer
P(t) such that
2P_lytl/2b < 6 < 2Pytl/2b.

It is clear that

N
wi(t, 2)— [ D Ty(t, 25 0, y)g;(x)dy

R, j=1

N
<D [ Tyt 5 0,9)g;(y) —g;(2)ldy + vl (dy) ]+
j=1 |y—zi<2ytl/2b
P

N
+ Y D) 1T5(t, 25 0, 9)I [19;(y) — g; (@) dy + Iyl (dy)] +

N
+ [ 1T4(t, 25 0,)llg5(2)ldy +

i=1 ly—zI>6
N
+ X [ 1Tt 25 0, Wil (dy) = Ty +d+ T+,
i=1 ly—zI>8
In view of (13) we have
|y — 2[2 | M0~ N
J, <C t~"%exp [—c(—t—) ]Zlyj(y) —g;(@)| dy +1v;| (dy)
j=1

ly—z|<2yt1/20

< NCe(2p)"
Notice that the inequalities |z—x| << pt'?® and |z —y| > 2! 1p"2
mply |z—y| > 2029t for 1 = 2, ..., P, hence

P
J, = 2NCE,zlnyneXp[_0(21—2y)2b/(2b_1)]
i=2

< CNe 2 2l yrexp [ —e(2172y)20/E- ],
=2
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Since |z — x| < pt'?® and |y —=| > 6, we can assume that |z —y| > 6/2
for ¢t sufficiently small, and hence

52 \1(zb-1) ¢ [ |z — y[2 \Meo-D
L] B o S T

Ry

Hence limJ; = 0. In a similar way we have
t—>0

5% \Veb—1 ¢ [|z—y|™\VeEr-D
Jy < Ot “’”exp[——( . ) ,] fexp[——(——) +
2 \ 2%t £, 2 t

+B Iylzb"zb""] exp ( —Bly P ~Y) |u;l(dy).

It is easy to show that there exists a positive constant g’ such that

¢ [|z—y[? \VE@-D
exp [_ _2_ (_t___) + ‘B |y|2b/(2b—-l)] < exp(ﬂ' |z|2b/(2b—l))

for 2z, ye R, and for ¢ sufficiently small, hence limJ, = 0. Noting finally

that >0
lim | 2‘ (623 0, 9)g;(x)dy = pi(w) = gy(a),
{—0 R, j=1
we obtain
lim  w(t, 2) = u(x).
|Z—$|<g‘ll2b

3. Application to special parabolic systems. Consider a parabolic
system of the form

n azu n
(14) é’laﬁ(t, ) ot +;b£‘(t, +2c"(t o)u— T 0

(k=1,...,N),

where the k-th equation contains derivatives of only one unknown funec-
tion.
Throughout this section we assume

I'. The coefficients af;, b%, cf and derivatives
2
LI S )
i O}
ox; 0z, 0; ox;

are continuous bounded functions in [0, T] x R, and Hoélder continuous
in « uniformly with respect to (¢,«) in [0,7] x R,; additionally the princi-

b*
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pal coefficients are continuous in ¢ uniformly with respect to (¢, ) in
[0,T]xR,.

IT’. There exists a positive constant » such that for any real vector
(e R, ‘

N
Dlak(t, @) &8 > %82 (B =1,...,N)
1,j=1
for all (¢, x)e [0, T] X R,.
III'. ¢(t,2) > Oforall (¢, x)e [0,T]x R,and l #k(l,k =1,..., N).
It is clear that condition II’ is equivalent to parabolicity in the sense
of Petrovskil. N
It follows [10] from III' that I'y(¢,2; 7,y)>0 (i,j =1,...,N)
for (¢, ), (z,¥)e [0, T] X R, (v< ). In paper [10] it is shown that all
elements I';(t, z; 7, y) of the fundamental matrix of the system (1) (with
b = 1) are non-negative if and only if

A¥(t,®) =0 in [0,TIx R, for [kl =1,2 and i #j,
A¥(t,@) >0 in [0, TIxXR, fori #j.

In this section we have always defined the norms ]|-||L§ by

Iflzy = [ [exp(—pplal|f(@)Pde]” i 1<p< oo
R’Il

and
IIfIIL;o = esssup [exp(—Blx|®) |f(2)]].

n

We shall extend Theorem 1 to the solutions of (14) satisfying the
growth conditions

llu; (2, -)Ingg M for 0<i<T (=1,...,N),

where u; (¢, #) = max[0, —u(?, )]. We begin with the following lemma:
LeMMA 2. Let {u;(t, )} (j = 1, ..., N) be a solution of (14) n (0, T] X R,
such that
”u;(ty ')”ngM (j=1,...,N)

for 0 <t T. Then there exists a positive constant 6, such that

N

w(t, @)+ [ DTyt 05 7, 9)u7 (r,9)dy >0 (6=1,.., 1)
R, j=1

for (t, #)e (v, min(T, v+ 6,)] X R,, where 0 < v < T.
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Proof. Introduce the function

N
wi(t, ) = uf (b, &) —u (8, 0)+ [ 3 Tylt, @ ©, y)u5 (z, 9)dy
. R, i=1

It is clear that there exists a positive constant &, such that {w;}
(¢ =1,..., N) satisfies the system (14) in (v, min(T, v+46,)| x R,. Note
that

wi (1, ) < ug (¢, @) (¢=1,...,N),

which implies that the inequality |w; (¢, )lle <M (t=1,...,N) holds
for te (v, min(z + é,, T)).
Since

limw,(t, ) = uj(v,#) >0 (j=1,...,N)

{1

in R,, it follows from the maximum principle (Theorem 5 of [12]) that
w;(t, ) >0 (j =1,...,N) in (v, min(v+ 6,, T)] X R,.
Now with the aid of Lemma 3 we can generalize Theorem 1:
TeEEOREM 3. Let {u;(t,x)} (j =1,...,N) be a solution of (14) in
(0, T]x R, such that

lluj™ (t, ')"Lg< M (j=1,...,,N)

Jor 0<t<T, where 1 <p< oco. Then there are fie L} (j =1,...,N)
such that

N
u(t, @)+ [ D' Iy(t, @5 0,9)fi(y)dy >0 (j=1,...,N)
Ry, j=1

n (0, 6,1 X R, with the usual modification when p = 1.
Proof. We know that the sets

{u,‘(%, .), k=1, } G=1,...,N)

are bounded in L7. There are f;e L} (j =1,..., N) and a subsequence
1/k, such that, for any g;e L7,

1
i ol dy = y (j=1,...,N).
1mR{u, (k, y)g,(y) y R{fj(y)yj(y) y (] )
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It is clear that I',(¢,»; 0,y) is in L?,. Hence

_[1
(15) lim [ > 10,55 0,05 (4 9)as

R, ji=1
N
_ fZ‘r,.,(t,w; 0, 9)f;(y)dy.

R, j=1

From Lemma 2 it follows that

1 .
u(t, ) + f ?I’u(t A k, 7?/) (k ,?/)d?/>0 (¢=1,...,N),

R, j=1

so that it suffices to prove that

tim fZF,,(t 55 o0 )47 (0 9) 0 = fzrﬁt 23 0, 9)f;(9)dy

(¢=1,...,N)
‘Write
= 1
PR (5 20 9)wr (0 w)an— fZP,ju 5 0, 9)f;(v)dy
n i=1 Ry J=
N
1 1
=[ le‘,-,-(t,w; -k—,y)u,-‘ (k—,y)dy—
B, j=1 8 8
2, 1
- Zrz‘j(tym; O)'.'/)'“’j_ (k—’y)d?/]+ _
R, j=1 8
al 1
+[ fzrij (t"”; Oyy)uj— (E‘) y)dy_
R, j=1

N
Iy(t, a3 0, y)f,-(y)dy] — Ty 4.
1

_R{

By (15) we get limJ, = 0. Using the method of the proof of Theorem 1

8—>00

one can show that limJ, = 0.

8—>00
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In paper [11] a representation theorem for non-negative solutions
is proved in the form of

N
(16)  w(t,@d) = [ Y Ty(t,@; 0,9)p(dy) (G =1,..., ),

R, j=0

where u; are non-negative measures satisfying condition
(17) Jexp(—Blal)u(da) < oo (j =1,..., F).
By

As an immediate consequence of Theorem 3 and (16) we obtain

CoROLLARY 1. Let {u;(t, )} (j =1,...,N) be a solution of (14) in
(0, T] X R, such that

lloe;™ (2, ')”Lp< M (j=1,...,N)

for 0<t<T. Then there are measure u; satisfying (17) and f;e LY
G=1,...,N)if 1 < p < oo with the usual modification when p = 1, such
that

N N
(18) wi(t, @) = [ D Ty(t, o5 0,9)m(dy)— [ D Ty(t, @5 0, y)f;(y)dy
R, j=1

R, i=1
(¢=1,...,N)
Jor (t,z)e (0, 6,] X R,.
In view of Lemma 1 and the representation (16) we can state the
following corollary:
COROLLARY 2. Let {u;(t,x)} (j =1,..., N) be a non-negative solution
of (14) in (0, Tl X R,, such

limu;(t,")=0 (¢=1,...,N)
10

in the topology of weak convergence of measures. Then wu;(t,z) =0 in
(0, TIxR, (j =1,...,N).
Using the representation (16) we deduce the following
CoROLLARY 3. Let {u;(t,®)} (j =1,...,N) be a solution of (14) in
(0, T} x R, such that
llug (2, .)IIL§’<M (¢=1,...,N)

Jor 0<t<T and
limu,(t,") =0 (¢=1,...,N)

t—0

in the topology of weak convergence of measures. Then wu;(t,x) =0
(j=1,...,N) in (0, TIxR,.
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COROLLARY 4. Let {u;(t,x)} (j =1,...,N) be a solution of (14) in
(0, T1x R, such that

||uj—(t’ .)”L§’<M (] =17“°7-N)
Jor 0 <t< T, where 1 <p < oo. Then u; (j =1, ..., N) have limits almost

everywhere in R, if t—0. l
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