COLLOQUIUM MATHEMATICUM

VOL. XLVI g 1982 : .FASC. 2

VARIETIES OF TOPOLOGICAL GROUPS
A SURVEY"*

BY

SIDNEY A. MORRIS (BUNDOORA, VICTORIA)

1. Varieties of groups. The study of varieties of groups (more generally,
varieties of algebras) has its roots in the work of Birkhoff [4] and Neumann
[60] in the 1930’s. A variety of groups [61] is the class of all groups satisfying
a certain family of laws; for example, the class of all abelian groups of
exponent (dividing) n satisfies the laws 7'y 'y = 1and 2 = 1. From this
definition it is immediately clear that there are no more than 2% wvarieties
of groups. But it was not until 1970 that Ol’Ssanskii [63] showed that there
are precisely 2% varieties of groups. We will see that this is very different
from the situation for varieties of topological groups.

Birkhoff observed that there is an alternative, but equivalent, defini-
tion for varieties of groups. A variety of groups can be described as
a class of groups closed under the operations ¢, S, and C, where @ denotes
a quotient group, S a subgroup, and C an arbitrary Cartesian product.
{To be pedantic one should say that varieties are also closed under the
formation of isomorphic images.) Indeed, Birkhoff proved the following

THEOREM 1 ([61]). If 2 is any non-empty class of groups and V (£2)
18 the smallest variety containing 2, then V(2) = Q8C(Q).

So every member of V (£2) can be written as a quotient group of a sub-
group of some Cartesian product of members of (.

We could now turn to a discussion of varieties of topological groups,
but instead we next look at varieties of topological vector spaces, as
certain features of topological varieties present themselves more clearly.

2. Varieties of topological vector spaces. A non-empty class of locally
convex Hausdorff topological vector spaces (LCS’s) is said to be a variety
[13], [14] if it is closed under the operations @, S, and C, where @ denotes
a quotient space, S a (not necessarily closed) subspace, and C an arbi-
trary Cartesian product with the Tychonoff product topology. Some well-
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known classes of LCS’s form varieties ; for example, the class of all Schwartz
spaces, nuclear spaces, and LCS’s having the weak topology.

In due course we will discuss topological laws and see how topological
varieties can be described in terms of laws.

To see how far topological varieties are from algebraic varieties,
we introduce the concept of a 7'(m)-space.

If F is an LCS and m is an infinite cardinal, we say that E is a T'(m)-
space if every neighbourhood of 0 in F contains a subspace of E of codimen-
gion strictly less than m. As every neighbourhood of 0 contains the trivial
subspace {0}, it is clear that an LCS F is a T (m)-space for every m strictly
greater than the dimension of F. Of course, the interest lies in how smalt
an m will suffice. Any normed space N is a T (m)-space if and only if the
dimension of N is strictly less than m. (To see this, simply look at the unit
ball in N.) However, all LCS’s with the weak topology (and these spaces
can have arbitrarily large dimension) are T'(N,)-spaces. (Indeed, this is a
characterization of such spaces.)

As products, subspaces, and quotients of T'(m)-spaces are T (m)-spaces,
we obtain

THEOREM 2 ([14]). If m is any infinite cardinal number and 2 is a
class of T (m)-spaces, then V (82) contains only T (m)-spaces.

COROLLARY 1. The class of all T(m)-spaces for any infinite cardinal
number m is a variety.

COROLLARY 2. If N i8 an infinite-dimensional normed space and E
i8¢ an LCS of smaller dimension, then N ¢ V (E).

As there are normed spaces of arbitrarily large dimension, we are
led to the following unexpected result:

COROLLARY 3. There is a proper class of varieties of topological vector
spaces.

It is easily verified that every T (m)-space E is isomorphic to a sub-

space of a product [] E;, where each E, is a quotient space of E and has
1el

dimension strictly less than m. This observation has some important
consequences.

COROLLARY 4. Every variety of T (m)-spaces is generated by LCS’s of
dimension strictly less than m.

Up to isomorphism there is only a set of LCS’s of dimension less than m.
So any variety generated by a family of LCS’s, each of dimension less
than m, is also singly generated; i.e. generated by a single LCS (namely,
the product of the members of the family).

COROLLARY 5. Every wariety of T (m)-spaces is singly gemerated.

COROLLARY 6. Every subvariety of a singly generated variety is singly
generated.
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We now state the most powerful known result in the study of varieties
of LOS’s. A proof of the analogous result for varieties of topological groups
will be given later.

THEOREM 3 ([14]). Let E be an LCS. If 2 is any non-empty class of
LCS’s, then E € V(R) if and only if E € SCQP (L2), where P denotes a finite
product.

An LCS E is said to be a universal generator for a variety V if V
= 8C({E}). A deep result of Komura and Komura [30] states that the
space (8) of rapidly decreasing sequence is a universal generator for the
variety of nuclear spaces. We now show how variety theory implies that
the nuclear variety, the Schwartz variety, and others have universal
generators. As an immediate consequence of Theorem 3 we have

CorROLLARY 1. Evwery singly generated variely has a universal generator.

Using this together with Corollary 6 to Theorem 2 and the fact that
the nuclear variety is a subvariety of the Schwartz variety which is in
turn a subvariety of V(l,) we obtain

COROLLARY 2. The variety of nuclear spaces and the variety of Schwartz
spaces have universal generators.

Of course, Corollary 2 does not give us a concrete universal generator.
As stated earlier, Komura and Komura [30] have such a generator for the
nuclear variety, while Randtke [66] and Jarchow [27] have found universal
generators for the Schwartz wvariety.

We now state a simple lemma which shows why Theorem 3 is important
in the study of Banach spaces in varieties.

LEMMA. Let N be a normed space. Then zf N € 8C(9Q) for some class 2
of LCS’s, then N € SP(Q).

Using Theorem 3 and this lemma we obtain

THEOREM 4. Let 2 be a class of LCS’s and N a normed space in V(82)
Then N € SPQP(82) = SQP(Q).

COROLLARY 1. Let L2 be a class of Banach spaces each of which has property 2,
where 2 is one of the following: reflexive, quasi-reflexive [11], almost reflexive
[31], separable, having separable dual, Hilbert. Then every Banach space
an V(2) also has property 2. '

Theorem 4 also allows us to use Banach space techniques to analyze
the varieties generated by the classical Banach spaces. This is done in
[14] and [66]. We record here some interesting results.

COROLLARY 2 ([14]). For 1 <p < oo and p +# 2, K any uncountable
compact metric space, (8) the space of rapidly decreasing sequences [30],
and @ the strong dual of the Fréchet space of all real seguences with the product
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topology [14],
V(R) S Vip) S V() S V(L) S V(L)

< V() = V(C(K)) = V(L) § V(le) = V(Ly)-

The next corollary is a much improved version of Banach’s result
on the incomparable linear dimension of /, and 1, for p # gq.

COoROLLARY 3 ([56]). If 1< p,q< oo and p # q, then V(1,)nV (1)
18 contained im the variety of Schwartz spaces. So any normed 8pace in
V(,)nV(l,) i finite dimensional.

COROLLARY 4 ([56]). If the infinite-dimensional Banach space B is
reflexive, quasi-reflexive or has a separable second dual, then V (B)n 7V (c,)
i8 a subvariety of the variety of Schwartz spaces.

Very little, however, is known about varieties generated by two or
more classical Banach spaces. For example, we record the open question:

ProBLEM. If 1 < p,q < oo and p # ¢, for what r does I, belong to
V({l,, l,))? (P 1248)

Forl<p< ocoand p #2,1,.eV({l,,l,}) if and only if r is between p
and 2 (see [56]).

Many other questions about varieties of LCS’s are mentioned in [14]
and [56].

3. Varieties of topological groups. In 1952 Higman [23] suggested
one candidate for the definition of a variety of topological groups, however
his work has not been followed up. In 1968 Ian D. Macdonald suggested
to the author that a wvariety of topological groups should be defined to be
a class of (not necessarily Hausdorff) topological groups closed under the
operations @, 8, and C, where @ denotes a (not necessarily Hausdorff)
quotient group, S a subgroup with the relative topology, and C an arbi-
trary Cartesian product with the Tychonoff topology. By not restricting
to Hausdorff groups, the underlying class of groups forms a variety of
groups. Two interesting types of varieties are the wide varieties and the
full varieties. A variety of topological groups is said to be a wide variety
if it is closed under the operation H, where H denotes a continuous homo-
morphic image. If V is a variety of groups, the full variety corresponding
to V is the class of all topological groups with underlying group lying
in V.

As for varieties of LCS’s the T (m)-property plays an important role.
A topological group @ is said to be an 8(m)-group if it has a basis of open
neighbourhoods of the identity consisting of subgroups of G of index
strictly less than m, where m is an infinite cardinal number. A T'(m)-group
is defined to be a continuous homomorphic image of an §(m)-group.
Of course, every 8(m)-group is a T'(m)-group while the converse is patently
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false. Every topological group G is a 7' (m)-group for every m greater than
the cardinality of G. However, a Lie group (in particular, a discrete group)
G is a T'(m)-group if and only if m is strictly greater than the cardinality
of @. (This follows from the fact that Lie grcups have no small subgroups.)
However, every compact Hausdorff group, being topologically isomorphic:
to a subgroup of a. product of unitary groups, is a T(22)-group.

THEOREM 5 ([39]). If 2 is a class of S(m)-groups or T (m)-groups,
then V(82) contains only S(m)-groups or T (m)-groups, respectively.

COROLLARY 1. For every (mon-trivial) variety of groups V, there is

a proper class of varieties of topological groups having V as their underlying
variety of groups.

COROLLARY 2. No (non-trivial) full variety of topological groups is
singly generated.

To put Corollary 2 in context we remind the reader that every variety
of groups is singly generated.

COorROLLARY 3. If R; and R are the additive groups of reals with the
discrete topology and the usual topology, respectively, then R ¢ V (R,).

Corollary 3 follows from Theorem 5 and the fact that R, is an §(2%)-
group while R is not. So V(R;) provides an example of a variety which
is not a wide variety. (Perhaps we should also mention that R; ¢ V(R).
Indeed, V(R)nV(R;) = V(Z), and so consists of S(X,;)-groups, where Z-
is the discrete group of integers.)

Observing that for any class 2 of topological groups we have SS ()
= 8(82),0C(Q) =C0(2),00(2) =Q(2),08(2) < 8C(2),00(2) = QC(Q),

and SQ(L2) < @8(2), we obtain the analogue of Birkhoff’s Theo-
rem 1.

THEOREM 6 ([5]). For any non-empty class 2 of topological groups,
V(Q) = Q80(Q).

(It should be noted that the alternative proof of Birkhoff’s theorem
given in [61], which depends on proving that a certain varietal freec group
lies in SC (L), does not extend to the topological case. See the Example
in [5].)

Theorem 6 is not particularly useful for topological varieties except
that, together with the following simple lemma, it allows us to prove
the fundamental theorem on generating varieties — Theorem 7.

LEMMA. Let G be a topological group with subgroups A and B such that
B is a closed normal subgroup of A. Let A and B be the closures in G of A

and B, respectively. Then the quotient group A [B is topologically isomorphic
to a subgroup of A/B.
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THEOREM 7 ([5]). If 2 i8 any class of topological groups and G 1is
a Hausdorff group in V (Q), then G € SCQSP (), where Q denotes a Hausdorff
quotient group and S a closed subgroup. ‘

Proof. By the Lemma, QSP(2) = SQSP(Q). Observing that any
Hausdorff group in 8CQ(Q) must lie in SCQ(2), we infer that it suffices
to prove that @ € SCQSP(R2). By Theorem 1, G € @SC(R). Therefore,

there exist K, € 2, 4 € I, such that K = [] K, has subgroups 4 and B,
tel

where B is a closed normal subgroup of 4 and & is topologically i'somorphic
to the quotient group A/B. Let X be the family of all finite subsets of I.

For ¢ € X put
-Ka= ”K.‘.
ieo

Let p, be the projection mapping of K onto K,, and &, the canonical
mapping of p,(4) onto the quotient group p,(4)/p.(B). Define a map

fi 4 —>]l h.ps(4) by
fla) = ”h, (@) for all ae 4;

oeZ
i.e. fis the product of 2,p,, ¢ € 2, and hence is a continuous homomorphism.,
For some 7 € 2, let
0= ” 0:‘7

1€l
‘where each O; is a neighbourhood of the identity in K; and O; = K, for
i ¢ . We prove that f is an open mapping of 4 onto f(4) by verifying
that

f(0n4) 2 ([[D.)nf(4),

ceXl
where D, = h,p,(A) for ¢ #<v and D, =h(p,(0)np,(4)). If
x € (”D,)nf(A),
ogeX
then there exists @ € A such that

» =f(a) e[ [D.,

oeXZ

and so there exists ¢ €O such that A.p.(¢) = h.p,(a); ie. p.(B)p.(c)
= p.(B)p.(a). Consequently, there exists b € B such that p,(¢) = p.(b)p.(a)
= p,(ba). But this means p,(ba) € p.(0), and therefore ba € O. This shows
that # € f(OnA), since clearly B is in the kernel of f, and so z = f(a)
= f(ba).

We now show that the kernel of f is in B. If y ¢ B, then, since B is
closed in A, there exists a neighbourhood ¥ = [[ N; of y in [] K; with

tel iel
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NAB =@, and N; = K for all ¢ ¢ y, where y is suitably chosen from ZX.
Clearly, p,(N)np,(B) = @ and since p,(y¥) € p,(N), we have p,(y) ¢ p,(B).
Since p,(B) is the kernel of k,, this shows that f(y) = (h,P.(y)),ez i8 DOt
the identity.

Thus f is an open continuous homomorphism with kernel B, and so

A/B is topologically isomorphic to a subgroup of ” hp,(A); ie.
G € SCQSP(R2), as we set out to prove.

COROLLARY 1. If 2 is any class of compact (or even pseudocompact)
Hausdorff groups, them every complete Hausdorff (in particular, locally
compact Hausdorff) group in V(R2) is compact.

COROLLARY 2. If Q is any class of locally compact Hausdorff groups

or a class of complete metrizable groups, then every Hausdorff group G in
V(R2) has a completion G which is in V (R).

In the abelian case the operators ¢ and 8 commute, and so Theorem 7
yields

COROLLARY 3. If Q2 i3 amy class of abelian topological groups and G
48 a Hausdorff group in V(R2), then G € SCQP(Q).

ProBLEM. Does Corollary 3 remain true if the condition “abelian”
is removed? (P 1249)

Naturally, we are interested in varieties generated by locally compact
groups. As a first step we look at varieties generated by Lie groups. One
might expect there to be a correspondence between varieties of topolo-
gical groups generated by Lie groups and varieties of Lie algebras. But it
soon becomes evident that one should be considering topological Lie
algebras.

A Banach Lie algebra L is a Lie algebra (over the reals) and a Banach
space such that there is a constant C with |[zy]| < Cllz| |lyl] for each
z,y € L. If B;, ¢ € I, are Banach Lie algebras and F is a subalgebra of the
product [] B;, then E with the topology induced from the product is

el

said to be a (locally convex) topological Lie algebra. A non-empty class
of topological Lie algebras is said to be a variety of topological Lie algebras
if it is closed under the formation of Cartesian products, subalgebras,
and separated quotients. Note that every variety of topological vector
spaces is a variety of topological Lie algebras.

The basic theorem connecting varieties of topological groups generated
by Lie groups and varieties of topological Lie algebras is the following

THEOREM 8 ([8]). Let G be a Lie group and L(Q@) its topological Lie
algebra (i.e., the Lie algebra of G given the unique vector space topology it
admats). Let V(@) be the variety of topological groups gemerated by @, and
V(L(@)) the variety of topological Lie algebras generated by L(Q).

2 — Colloquium Mathematicum XLVI.2
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(i) If H is a Lie group in V (@), then its topological Lie algebra L(H)
is in V(L(@)).

(ii) If L is any finite-dimensional topological Lie algebra in V(L(G)),
then there is a Lie group H in V (Q) such that L(H) is isomorphic to L.

Theorem 4 states that if we are looking for a normed space N in
a variety of topological vector spaces generated by a class £ of normed
spaces, then it must lie in @QSP(L2);i.e., N can be “manufactured” from £
without going outside the class of normed spaces. The importance of The-
orem 8 lies in the analogous result holding for Banach Lie algebras, and
in particular finite-dimensional Lie algebras.

THEOREM 9 ([8]). If 2 is any class of topological Lie algebras and B
is a Banach Lie algebra in V(R), then B e QSP(RQ). In particular, this
18 the case for finite-dimensional topological Lie algebras.

COROLLARY 1. Let G be a simple Lie group of dimension n and let
{G;: i e I} be Lie groups of dimension less than n. Then G ¢ V ({G;: 1 € I}).

COROLLARY 2. Let 2 be a class of conmected soluble (respectively,
nilpotent) Lie groups. Then any connected Lie group in V() is soluble
(respectively, nilpotent).

Specific simple Lie groups are examined in [8] where it is shown,
for example, that for the unitary groups U(n) and the symplectic groups
Sp(n) the following holds: U(m) € V(U(n)) and Sp(m) e V(Sp(n)) if and
only if m < n.

In view of Theorems 8 and 9 it is possible that in a variety of topo-
logical groups generated by a class £ of Lie groups every Lie group in
V(£2) can be “manufactured” from 2 without going outside the class
of Lie groups. So we state our next open question:

ProBLEM. If Q is a class of Lie groups and @ is a Lie group in V(Q),
is it true that G € QSP(2)? (P 1250)

This is known to be true if G is a discrete group [46]. Other partial
results on this problem are given in [50]. In particular, we state

THEOREM 10 ([50]). If 2 is a class of si?rip_ly connected soluble Lie
groups and G is a Lie group in V(2), then G € QSP(Q).

THEOREM 11 ([50]). Let 2 be a class of locally compact Hausdorff
groups. Then

(i) Re V() if and only if ReS(2);

(i) Z e V(Q) if and only if Z € 8(Q);

(ili) T e V(R2) if and only if T cQS(L2), where T is the circle group;

(iv) if every member of 2 is abelian, then T € V() if and only if
T €Q(9).

COoROLLARY. (i) V(R) 2 V({T',2}) 2 V(T). (ii) V{{T, Z2}) 2 V(2).
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One final result in this direction is given in [50]. We say that a topo-
logical group G has property 8 if for any class 2 of Lie groups such that
G e V(2) we have G € 8(Q).

THEOREM 12 ([50]). Let G be a compact connected Hausdorff group.
Then G has property S if and only if G is a simple simply connected Lie
group such that the intersection of all the proper mon-trivial subgroups of
Z(Q) is mot {1}; i.e. those having the following Lie algebras: (i) A,,n+1 a
prime power; (ii) B,,n > 2; (ii) C,,n = 3; (iv) D,, n =>4, and n an odd
prime power; (v) Gy; (vi) F,; (vii) Eg; (viil) E,; and (ix) Es.

In [10] Chen and Yoh have generalized the definition of Lie groups
so that the class of generalized Lie groups is closed under the operation
of Cartesian product.

As is well known, connected locally compact Hausdorff groups can
be approximated by (finite-dimensional) Lie groups. This allows us to
extend Corollary 2 to Theorem 9 to connected locally compact groups.
Indeed, we obtain

THEOREM 13 ([46]). Let 2 be a class of locally compact Hausdorff
groups each of which has the component of the identity soluble (respectively,
nilpotent). Then any comnected locally compact Hausdorff group in V(L)
18 soluble (respectively, milpotent).

Without the connectedness condition Theorem 13 would be false.
However, for Lie groups we have

THEOREM 14 ([46]). If Q is a class of soluble locally compact H ausdorff
groups, then any Lie group in V(L) is soluble.

In recent years a great deal of work has been done on compactness
conditions in topological groups, see, e.g., [21]. It is of interest to see
how these conditions behave with respect to the wvarietal operations.
A topological group is said to be maximally almost periodic (MAP) if it
admits a continuous one-one homomorphism into a compact Hausdorff
group. A topological group is said to be an SIN-group if every neighbour-
hood of the identity contains a neighbourhood of the identity invariant
under inner automorphisms. The class of MAP groups and the class of
SIN-groups have precisely the same intersection with the class of connected
locally compact Hausdorff groups — namely those groups of the form
R" x K, where K is compact and # is'a non-negative integer.

THEOREM 15 ([47]). If Q is a class of SIN-groups, then every member
of V(82) is an SIN-group.

If “SIN” were replaced by “MAP” in Theorem 15, the statement

would be false, even if Q consisted of locally compact groups. However,
we have

THEOREM 16 ([47]). If Q 48 a class of locally compact M AP-groups,
then every connected Hausdorff group in V(RQ) is MAP.
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A Hausdorff topological group is said to be an IN-group if there is
a compact neighbourhood of the identity which is invariant under inner
automorphisms. Any locally compact Hausdorff group having the closure
of its commutator subgroup compact is an IN-group, and conversely — any
connected IN-group has the closure of its commutator subgroup compact.

THEOREM 17 ([57]). Let 2 be a class of topological groups each of
which has the property that the closure of its commutator subgroup 8 compact.
Then every complete Hausdorff group in V (82) has this property.

COROLLARY 1. Let 2 be a class of IN-groups. Then any connected
locally compact Hausdorff group im V(2) is an IN-group.

COROLLARY 2. Let 2 be a class of connected IN-groups. Then any
locally compact Hausdorff group in V(L) 18 an IN-group.

ProBLEM. Is every locally compact Hausdorff group in a variety
generated by IN-groups necessarily an IN-group? (P 1251) The varieties
generated by R and T are of particular interest.

THEOREM 18 ([43], [24], [6]). Let 2 be a class of locally compact
Hausdorff abelian groups none of which is mot totally disconnected. Then

(T) if all members of Q2 are compact,

v
V() = {V(R) otherwise.

Further, any connected complete group or complete melrizable group
in V(R) is topologically isomorphic to a product of copies of R and Z, and
a compact group.

PrOBLEM. What varieties lie between V(T') and V(R)? Indeed, what
can be said about the lattice of subvarieties of V(R)%? (P 1252)

Finally in this section, we recall we said that we considered non-
Hausdorff topological groups so that the underlying class of groups of
a variety of topological groups is a variety of groups. The following the-
orem shows that restricting to Hausdorff groups would lose this desirable
feature.

THEOREM 19 ([51]). Let 2 be a class of connected compact groups
and let X be the class of all groups which, with some Hausdorff topology,
appear in V(2). Then X is a variety of groups if and only if each member
of 2 is abelian.

In contrast with Theorem 19 we present

THEOREM 20 ([52]). If G is any connected MAP-group (in particular,
compact Hausdorff or locally compact Hausdorff abelian), then the underlying
variety of groups of V(Q) is either the variety of all groups or the variety of
all abelian groups.

The last theorem in this section generalizes a result of Ian D. Mac-
donald (private communication) which states that if the group G with
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some topology lies in a variety V, then G with the indiscrete topology
(i.e., the open sets are G and ©) also lies in V.

THEOREM 21 ([39]). Let V be a variety of topological groups and G
a topological group. If G|N lies in V, where N is the closure of the identity
in G, and the underlying group of @ with sometopology is in V, then G is in V.

4. Varietal free topological groups. If V is a variety of tcpological
groups, X is a topological space, and F is a member of V, then F is said
to be a free topological group of V on X, denoted by F (X, V), if it has the
following properties:

(a) X is a subspace of F';

(b) X generates F' algebraically;

(e) for any continuous mapping y of X into any member H of V,
there exists a continuous homomorphism I' of # into H such that I'|X = y.
THEOREM 22 ([37]). Let X be a topological space and V a variety
of topological groups. Then
(i) F(X, V) is unique (up to isomorphism) if it exists;
(il) B(X, V) ewists if any only if there i3 a member of V which has X
as a subspace;

(iii) (X, V) is algebraically the free group on the set X of the under-
lying variety of groups of V.

As every topological group is a completely regular space and every
subspace of a completely regular space is completely regular, it is clear that
F(X, V) cannot exist unless X is completely regular. Conversely, we have

CoroLLARY 1 ([37]). If the variety V contains a topological group
with non-trivial path component, then F (X, V) exists for any completely
regular space X.

CoroLLARY 2 ([37]). If the topological group G is in the variety V,
then F(G, V) ewists. Further, @ is a quotient group of F(G, V).

A variety of topological groups V is said to be a S-variety if F(X, V)
exists and is Hausdorff for every completely regular Hausdorff space X.

THEOREM 23 ([38], [49]). Every full variety is a B-variety.

The converse of Theorem 23 is of course false. Indeed, f-varieties,
which are not full varieties, exist in profusion.

THEOREM 24 ([39]). Let V be any wariety of groups. Then there is
a proper class of varieties of topological groups which are B-varieties and have
V as their underlying variety of groups.

THEOREM 25 ([49]). If 2 is any (non-trivial) class of arcwise connected
Hausdorff groups, then V() is a B-variety.

As every connected locally compact Hausdorff group can be approxi-
mated by Lie groups, we obtain the following pleasant corollary:
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. COROLLARY. If 2 is any class of conmmected locally compact Hausdorff
groups, then V() i8 a f-variety.
We mention in passing that the variety of topological groups generated
by the class of all locally compact groups is not as large as one might
expect. We record three results in this direction.

THEOREM 26 ([44]). Let 2 be the class of all locally compact Hausdorff
groups. Then the locally conmvex Hausdorff topological vector space E, re-
garded as a topological group, is in V () if and only if E has its weak topology.
In particular, no Banach space, regarded as a topological group, is in V(£).

If V is the variety of all topological groups, F(X, V), where X is
the closed unit interval with its usual topology, will be denoted by F[0, 1].

THEOREM 27 ([64]). If V is8 any variety of topological groups containing
F[0,1], then V contains every locally compact Hausdorff group G which
has. its quotient group G|C(G) compact, where C (@) is the component of the
identity in G. In particular, V contains all connected locally compact Haus-
dorff groups and all compact Hausdorff groups.

" THEOREM 28 ([54]). The variety of topological groups generated by the
class of all locally compact groups does not contain F[0, 1].

It was shown by Kakutani [28], Nakayama [59], and Gelbaum [19]
that if V is the variety of all topological groups or of all abelian topolo-
gical groups and X is any completely regular Hausdorff space, then F(X, V)
is an MAP-group. The next theorem generalizes this.

THEOREM 29 ([562]). For any non-abelian (respectively, abelian) va-
riety V, F(X, V) exists and is MAP for each completely reqular Hausdorff
space X if and only if V contains a non-abelian (respectively, abelian) arcwise
connected M AP-group.

COROLLARY. If V is any variety containing a connected compact Haus-
dorff non-abelian group, then F (X, V) is MAP for each completely regular
Hausdorff space X.

The next result shows how strong an algebraic restriction F (X, V)
being MAP is.

THEOREM 30 ([52]). Let V be a variety such that F(X,V) is MAP
for some non-totally disconnected space X. Then the underlying variety of
groups of V is either the class of all groups or all abelian groups.

Relatively little is known about the topology of F(X, V) in general.
However, some information is known when V is a full variety.

A Hausdorff topological space X is said to be a k,-space if

X = UXn;
n=1

where each X, is compact, and it has the property that a subset A of X
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is closed if and only if each AN X, is compact. As examples of k,-spaces
we mention countable CW-complexes, locally compact o-compact Haus-
dorff spaces, and connected locally compact Hausdorff groups, e.g.,

R = |J X, is a k,-decomposition of R if X, is the interval [ —n, n].
n=1

THEOREM 31 ([32]). If X is any k,-space and V is a full variety,
then F(X, V) is a k,-space. | '

COROLLARY. Let X be a completely regular Hausdorff space and V
a full variety. If Y is any finite subset of F(X, V), then the topology induced
on the subgroup generated by Y is discrete.

If V is any B-variety and X is any completely regular Hausdorff
space, then X is easily shown to be a closed subset of F'(X, V). However,
the next theorem indicates that X is an open subset of F'(X, V) only in
trivial cases.

THEOREM 32 ([51]). Let X be a topological space and V a variety such
that F(X, V) exists. If X is an open subset of F(X, V), then, providing
F(X, V) is not the Klein four-group, F(X, V) has the discrete topology.

We conclude this section by recording our lack of knowledge of topo-
logically relatively free groups.

A topological group F is said to be topologically relatively free with
free generating space X if X is a subspace of F which generates F' algebra-
ically and every continuous mapping of X into F can be extended to a con-
tinuous endomorphism of F.

ProBLEMS. If @ is topologically relatively free, is. the underlying
group of @G relatively free? (P 1253)

If @ is topologically relatively free with free generating space X and @
is algebraically relatively free with free generating set X, is G necessarily
F(X, V(@)% (P 1254)

5. Topological laws. No doubt the reader has been waiting with
bated breath to find out if varieties of topological groups can be described
by “laws”. An affirmative answer was recently given by Taylor [71].
The material in this section comes directly from Taylor’s paper.

In accordance with Taylor, who has generalized the basic theory on
varieties of topological groups to varieties of topological universal algebras,
we present the work on laws in the context of topological universal algebras.

For convenience, fix a type of universal algebra and fix a class X
of variables disjoint from all other sets and classes under consideration.

Let (D, <) be an arbitrary directed set and f: D — Te(X) a function
from D to the class of terms over X of the given type. We will denote
the term f(d) by 7;, and we let = denote an arbitrary term. A limit law
is an infinitary formal expression f — v with f and 7 arbitrary, as above.
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Generally, we do not mention D and simply write r; — v to express “the
net of terms 7; always approaches the term z”. An assignment is & mapping
0: X - o, where & is a topological algebra of the given type.

We say & satisfies the limit law t; — v under the assignment 0 if the
net z;[0] converges to z[6].

The topological algebra < is said to obey the limit law v; — v if
satisfies the limit law z; — r under every assignment 6: X — .

Example. [[ EXEARAR ], m,,] —1 with [:,-] denoting com-
mutator is a limit law which all nilpotent discrete topological groups obey.

For any class I' of limit laws we denote by ModI" the class of all
topological algebras & which obey every limit law in I

THEOREM 33 ([71]). If I' i8¢ any class of limit laws, then Mod I is
a wide variety of topological algebras.

Recall that a wide variety is closed under subalgebras, Cartesiam
products, and continuous homomorphic images.

Example. Let @ be the group of rationals with the usual topology.
Then @/Z obeys the law m! 2 — 0 but T does not. Thus 7 is not in the
wide variety of topological groups generated by Q/Z.

THEOREM 34 ([71]). Every wide wvariety of topological algebras is
Mod (XU T’) for some set X of algebraic laws and some class I of limit laws.

Theorems 33 and 34 of Taylor show that wide varieties are charac-
terized by limit laws. In an attempt to characterize varieties of topological
algebras Taylor introduces the notion of contingent limit laws. The attempt
is only partially successful in that, while he shows that every variety can
be defined by a class of contingent limit laws (and algebraic laws), it has
been pointed out by Dixon [15a] that not every class defined by contingent.
limit laws is a wvariety.

Take X and f as before. Now, let I be any set and, for each ¢ € I,
let (D;, <) be a directed set. Assume that all o5 (i €I and 4 € D,) and
a* (¢ € I) are distinet members of X. A contingent limit law is an infinitary
formal expression A of the form

(Aay — o) = (v4 > 7).
iel

A topological algebra 7 satisfies the contingent limit law A under the
assignment 6: X — of if: the net z,[0] converges to v[0] in the topology
of o if, for each ¢ € I, 6(x}) converges to 0(°) in the topology of .

Example. The contingent limit law (z; — 1) = (252,27' — 1), where
d ranges over an arbitrary directed set D, is satisfied by all SIN-groups.

THEOREM 35 ([71]). If V is any variety of topological algebras, thenm

there exist a class of contingent limit laws and a set X of algebraic laws such
that V = Mod(ZuTI).
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Any class defined by contingent limit laws is clearly closed under the
operations 8 and C; the difficulty arises with . The next result provides
some further information.

THEOREM 36 ([71]). If A i8 a contingent limit law of the form (x, — x)
=14 —> T With n ranging over all natural numbers, and if o/ i8 a topological uni-
versal algebra satisfying A and </ is first countable, then A holds in every open
continuous homomorphic image of .

COROLLARY ([71]). If A 18 a contingent law of the form (x, — x)
= 1, —> T With n ranging over all natural numbers, and 2 is a collection
of first-countable algebras from some congruence-permutable variety such.
that </ satisfies A for every o € 2, then A holds in every topological algebra.
in the variety of topological algebras generated by .

COROLLARY. If A i8 a contingent law of the form (x, > x) =14 > 7
with n ranging over all natural numbers, and 2 i8 a collection of metrizable
topological groups satisfying A, then A holds in every topological group inm-
V(92).

There are obviously numerous interesting questions one can ask
about limit laws and contingent limit laws. We mention only four questions.

PrOBLEMS. (i) What limit laws and contingent limit laws does R
satisfy? (P 1255)

(ii) Find a collection of limit laws which characterize the wide variety
of topological groups generated by R. (P 1256)

(iii) Find a collection of contingent limit laws which characterizo-
the variety of topological groups generated by R. (P 1237)

(iv) Find a collection of contingent limit laws which characterize-

the variety of topological groups generated by all countable discrete
groups. (P 1258)
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