CHARACTERIZING THE ARC BY COMPOSITION OF FUNCTIONS

BY

CHARLES L. HAGOPIAN (SACRAMENTO, CALIFORNIA)

Let X be a compact metric space and let C(X) be the space of continuous functions of X onto X with metric induced by the sup norm. For f and g belonging to C(X), we set f < g if there is a function a in C(X) such that fa = g; this defines a quasi-ordering (a relation that is reflexive and transitive) on C(X). A subset D of C(X) is said to be directed if, for each pair of functions f and g belonging to D, there is a function h in D such that f < h and g < h; which means there exist functions a and b in C(X) such that a in a i

It is known that a Peano continuum X is an arc if and only if C(X) contains a dense directed subset. The "only if" statement in this theorem is proved by Mioduszewski in [6]. That this condition actually characterizes the arc among Peano continua is proved by White in [8]. Here we extend this theorem to a larger class of arcwise connected continua.

Notation. We denote the cone with vertex v over a space T by T*v. Recall that the cone over T is obtained from the product space $T \times [0, 1]$ by identifying $T \times \{1\}$ to a point v, called the *vertex* of the cone.

Definitions. A continuum is a non-degenerate compact connected metric space. A Peano continuum is a locally connected continuum. A metric space X is said to be a quasi-Peano continuum if there exists a compact totally disconnected metric space T such that T*v is a continuous image of X and X is a continuous image of T*v.

It follows from Urysohn's lemma ([1], p. 57) and the Hahn-Mazur-kiewicz theorem ([1], p. 129) that every Peano continuum is a quasi-Peano continuum.

In this paper we prove that a quasi-Peano continuum X is an arc if and only if C(X) contains a dense directed set.

Note that since the cone over any non-empty compact totally disconnected metric space is a continuous image of the cone over the Cantor set, every quasi-Peano continuum is a continuous image of the Cantor

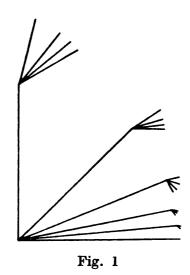
cone. The following example indicates that not all metric continuous images of the Cantor cone are quasi-Peano continua.

Example. In the complex plane, define F to be the closure of

$$\{re^{i\theta}\colon 0\leqslant r\leqslant 1 \text{ and } \theta=2^{-n}\pi, \text{ where } n \text{ is a positive integer}\}.$$

Note that F is a cone over a convergent sequence. Let $\{F_n\}_{n=1}^{\infty}$ be a collection of disjoint cones in the complex plane, each homeomorphic to F such that, for each n, the diameter of F_n is less than 2^{-n} and F_n meets F only at the point $\exp[i \cdot 2^{-n}\pi]$, which is the vertex of F_n (see

Fig. 1). Let X be the plane continuum $F \cup \bigcup_{n=1}^{\infty} F_n$.



Note that the Cantor cone can be mapped continuously onto X. In fact, X is a continuous image of the cone over the closure of the planar set of points having rectangular coordinates of the form (m^{-1}, n^{-1}) , where m and n are integers and $0 < m \le n$.

If T is a compact totally disconnected metric space that has infinitely many limit points, then X cannot be mapped continuously onto the cone over T. Furthermore, if T is a compact totally disconnected metric space that has only finitely many limit points, then X is not a continuous image of the cone over T. Hence X is not a quasi-Peano continuum.

It is known that the hyperspace of closed subsets of each continuum is a quasi-Peano continuum ([3], Theorem 2.7, and [5]).

Definitions. For topological spaces X and Y, let C(X, Y) denote the collection of continuous functions that take X onto Y, and let ΔY denote the diagonal of $Y \times Y$. Then, for functions f and g belonging to C(X, Y), define the continuous function $f \times g$ of $X \times X$ onto $Y \times Y$ by

$$f \times g(x_1, x_2) = (f(x_1), g(x_2));$$

and define the double graph of f and g to be the subset $[f, g] = (f \times g)^{-1} (\Delta Y)$ of $X \times X$.

Double graphs are introduced in [2] and [7], and studied in [6] and [8]. As in [8], we use the following three properties of double graphs.

PROPERTY 1. Let f, g, a and β be elements of C(X); then $fa = g\beta$ if and only if $a \times \beta(\Delta X)$ is a subset of [f, g].

Indeed, this property follows immediately from the definition.

PROPERTY 2. If f and g belong to C(X) and U is an open neighborhood of [f, g] in $X \times X$, then there exist neighborhoods V_f of f and V_g of g in C(X) such that [f', g'] is a subset of U for every f' in V_f and g' in V_g .

For the proof see [8], p. 190.

Definition. Let π_1 and π_2 be the projections of $X \times X$ onto its first and second factors, respectively. A subset F of $X \times X$ is said to be full if $\pi_1(F) = \pi_2(F) = X$.

PROPERTY 3. If f, g, a and β belong to C(X) for X connected and $fa = g\beta$, then some component of [f, g] is full.

Indeed, it follows from Property 1, the continuity of $\alpha \times \beta$, and the fact that α and β map X onto itself, that $\alpha \times \beta(\Delta X)$ is a full connected subset of [f, g].

Notation. Let p and q be distinct points of the plane E^2 . We denote the closed straight-line segment in E^2 from p to q by $\langle p, q \rangle$. We assume that the arcs from the vertex in each cone in E^2 (used in the proof of Theorem 1) are straight.

THEOREM 1. If X is a quasi-Peano continuum and C(X) has a dense directed subset, then X is an arc.

Proof. Since X is a quasi-Peano continuum, there exist a compact totally disconnected metric space T and continuous functions ψ and μ such that ψ maps X onto T*v and μ maps T*v onto X. There exists a compact subset T_1 of T such that

- (1) μ takes the subcone $T_1 * v$ of T * v onto X, and
- (2) for each proper compact subset Z of T_1 , the subcone Z*v of T*v is not mapped by μ onto X.

Let σ_1 be a continuous function of T*v onto T_1*v .

Assume that T_1 is an infinite set. By considering three cases, we prove that this assumption contradicts the hypothesis of the theorem. This suffices to prove the theorem, since T_1 being finite implies that X is a Peano continuum ([9], Theorem 1.51, p. 26) and, therefore, an arc ([8], Theorem 1).

Case 1. Suppose that T_1 is a perfect set. For i = 1, 2, 3, 4, define C_i to be the Cantor ternary set on the interval $\langle (2i-1, 0), (2i, 0) \rangle$

in E^2 . Define C to be the plane continuum

$$\langle (2,1), (8,1) \rangle \cup \bigcup_{i=1}^{4} C_{i} * (2i,1).$$

Since T_1 is a compact totally disconnected perfect metric space, there is a continuous function σ_2 of T_1*v onto C.

For i=1,2, let D_i be the Cantor ternary set on the interval $\langle (0,2i-1),(1,2i-1)\rangle$; and, for i=3,4, let D_i be the Cantor ternary set on $\langle (-1,2i-3),(0,2i-3)\rangle$. Define D to be the plane continuum

$$(D_1 \cup D_2) * (0, 2) \cup (D_3 \cup D_4) * (0, 4).$$

Define σ_3 to be a continuous function that takes C onto D.

Note that $\varphi = \sigma_3 \sigma_2 \sigma_1 \psi$ is a continuous function of X onto D.

There exist mutually exclusive perfect subsets Z_1, Z_2 and Z_3 of T_1 such that

(1)
$$\bigcup_{i=1}^3 Z_i = T_1$$
, and

(2) for each i = 1, 2, 3, there is a point p_i of the subcone $Z_i * v$ of $T_1 * v$ with the property that $\mu(p_i)$ does not belong to $\mu((T_1 \setminus Z_i) * v)$.

For each i=1,2, let h_i be a homeomorphism of $D_i*(0,2)$ onto Z_i*v that takes some point a_i of $\langle (0,i), (0,i+1) \rangle$ to p_i ; and, for each i=3,4, define h_i to be a homeomorphism of $D_i*(0,4)$ onto $Z_{i-1}*v$ that takes a point a_i of $\langle (0,i), (0,i+1) \rangle$ to p_{i-1} .

For each i=1, 2, let k_i be a homeomorphism of $D_i*(0, 2)$ onto $Z_{2i-1}*v$ that takes a point b_i of $\langle (0,i), (0,i+1) \rangle$ to p_{2i-1} ; and, for each i=3, 4, let k_i be a homeomorphism of $D_i*(0, 4)$ onto $Z_{6-i}*v$ that takes a point b_i of $\langle (0,i), (0,i+1) \rangle$ to p_{6-i} .

Using these homeomorphisms, we now define continuous functions γ and ϱ of D onto $T_1 * v$. For each point z of D, select integers i and j such that z belongs to the domain of h_i and to the domain of k_j , and then define γ and ϱ by $\gamma(z) = h_i(z)$ and $\varrho(z) = k_j(z)$.

It follows that $f^* = \mu \gamma$ and $g^* = \mu \varrho$ are continuous functions of D onto X.

No component of $[f^*, g^*]$ is full. To see this assume there exists a component F of $[f^*, g^*]$ in $D \times D$ that is full. Note that the set $\{(0,3)\} \times D$ separates $D \times D$. Let H denote the closure of the component of the set $D \times D \setminus (\{(0,3)\} \times D)$ containing $\{a_1\} \times D$. Let J be a component of $F \cap H$ with the property that a_1 belongs to $\pi_1(J)$. Since J meets $\{(0,3)\} \times D$ ([4], Theorem 1, p. 172), the continuum $\pi_1(J)$ in D contains a_2 . Let a_1 and a_2 be points of D such that a_1 and a_2 belong to a_2 . Since a_3 subset of a_4 is a subset of a_4 , a_4 , it follows that

$$\mu\gamma(a_1) = \mu\varrho(c_1) = \mu(p_1)$$
 and $\mu\gamma(a_2) = \mu\varrho(c_2) = \mu(p_2)$.

Since, for i=1,2, the point $\mu(p_i)$ is not in $\mu((T_1 \setminus Z_i) * v)$, the points c_1 and c_2 must belong to $D_1 * (0,2)$ and $D_4 * (0,4)$, respectively. Hence the continuum $\pi_2(J)$ intersects both $D_1 * (0,2)$ and $D_4 * (0,4)$ and, therefore, contains the point b_2 . But this implies the existence of a point z of $\pi_1(H)$ such that (z,b_2) belongs to J, which is impossible, since $g^*(b_2)$ is not a point of $f^*(\pi_1(H))$.

Following White ([8], the proof of Theorem 1, p. 191) we now write $f = f^* \varphi$ and $g = g^* \varphi$. Observe that since $\varphi \times \varphi([f, g])$ is a subset of $[f^*, g^*]$ and $\varphi \pi_i = \pi_i(\varphi \times \varphi)$, no component of [f, g] in $X \times X$ is full. It follows from a short argument of White ([8], the proof of Theorem 1, p. 191) involving Property 2 that there exist neighborhoods V_f of f and V_g of g in C(X) such that no component of [f', g'] is full if f' belongs to V_f and g' belongs to V_g . According to Property 3, this contradicts the hypothesis of the theorem.

Case 2. Suppose that T_1 has exactly one isolated point y. By adjoining the closed segment $\langle (\frac{1}{2},1),(0,2)\rangle$ to the set D (defined in Case 1), extending γ and ϱ to continuous functions each of which takes $\langle (\frac{1}{2},1),(0,2)\rangle$ onto the arc in T_1*v from y to v, and then applying the preceding argument, we get a contradiction.

Case 3. Suppose that T_1 has more than one isolated point. Let y_1 and y_2 be distinct isolated points of T_1 . Define E_1 to be a subset of the closed interval $\langle (0,1), (1,1) \rangle$ that contains the point (0,1) and is homeomorphic to $T_1 \setminus \{y_1, y_2\}$. Let E denote the planar set

$$\langle (0,2), (0,5) \rangle \cup E_1 * (0,2).$$

Applying the argument of Case 1, with E in place of D and the arcs in T_1*v from v to y_1 and y_2 in place of Z_2*v and Z_3*v , we again get a contradiction.

Hence T_1 is finite and the cone T_1*v is locally connected. Therefore X, being a continuous image of T_1*v , is a Peano continuum ([9], Theorem 1.51, p. 26). It follows from White's theorem ([8], Theorem 1) that X is an arc.

THEOREM 2. Suppose that X is a quasi-Peano continuum. Then X is an arc if and only if C(X) contains a dense directed subset.

This theorem follows directly from Theorem 1 and [6], Theorem 2.

REFERENCES

- [1] J. Hocking and G. Young, Topology, Massachusetts 1961.
- [2] T. Homma, A theorem on continuous functions, Kodai Mathematical Seminar Reports 1 (1952), p. 13-16.

- [3] J. L. Kelley, Hyperspaces of a continuum, Transactions of the American Mathematical Society 52 (1942), p. 22-36.
- [4] K. Kuratowski, Topology, Vol. 2, New York 1968.
- [5] S. Mazurkiewicz, Sur le type c de l'hyperspace d'un continu, Fundamenta Mathematicae 20 (1933), p. 52-53.
- [6] J. Mioduszewski, On a quasi-ordering in the class of continuous mappings of a closed interval into itself, Colloquium Mathematicum 9 (1962), p. 233-240.
- [7] R. Sikorski and K. Zarankiewicz, On uniformization of functions (1), Fundamenta Mathematicae 41 (1954), p. 339-344.
- [8] W. White, Characterizing the interval and the circle by composition of functions, Colloquium Mathematicum 24 (1972), p. 189-193.
- [9] G. T. Whyburn, Analytic topology, American Mathematical Society Colloquium Publications 28 (1963).

CALIFORNIA STATE UNIVERSITY SACRAMENTO, CALIFORNIA

Reçu par la Rédaction le 8. 6. 1974