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Let X be a compact metric space and let C'(X) be the space of con-
tinuous functions of X onto X with metric induced by the sup norm.
For f and ¢ belonging to C(X), we set f < g if there is a funetion a in C(X)
such that fa = ¢; this defines a quasi-ordering (a relation that is reflexive
and transitive) on C(X). A subset D of C(X) is said to be directed if, for
each pair of functions f and g belonging to D, there is a funection % in D
such that f < b and g < h; which means there exist functions a and g in
C(X) such that fa = g¢p.

It is known that a Peano continuum X is an arc if and only if C(X)
contains a dense directed subset. The “only if” statement in this theorem
is proved by Mioduszewski in [6]. That this condition actually characterizes
the arc among Peano continua is proved by White in [8]. Here we extend
this theorem to a larger class of arcwise connected continua.

Notation. YWe denote the cone with vertex v over a space I by
T xv. Recall that the cone over 7' is obtained from the product space
T x [0, 1] by identifying T' x {1} to a point v, called the vertex of the cone.

Definitions. A continuum is a non-degenerate compact connected
metric space. A Peano continuum is a locally connected continuum. A me-
tric space X is said to be a quasi- Peano continuum if there exists a compact
totally disconnected metric space T such that T v is a continuous image
of X and X is a continuous image of T *v.

It follows from Urysohn’s lemma ([1], p. 57) and the Hahn-Mazur-
kiewicz theorem ([1], p. 129) that every Peano continuum is a quasi-Peano
continuun.

In this paper we prove that a quasi-Peano continuum X is an arc if
and only if C(X) contains a dense directed set.

Note that since the cone over any non-empty compacet totally dis-
connected metric space is a continuous image of the cone over the Cantor
set, every quasi-Peano continuum is a continuous image of the Cantor
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cone. The following example indicates that not all metric continuous im-
ages of the Cantor cone are quasi-Peano continua.

Example. In the complex plane, define F to be the closure of
{re®: 0<r<1 and 6 = 2 "n, where n is a positive integer}.

Note that F is a cone over a convergent sequence. Let {F, }5_, be

a collection of disjoint cones in the complex plane, each homeomorphic

to F such that, for each n, the diameter of F, is less than 27" and F,

meets F only at the point exp([s-27"=], which is the vertex of F, (see
o0

Fig. 1). Let X be the plane continuum FulJF,.

na=l

Fig. 1

Note that the Cantor cone can be mapped continuously onto X.
In fact, X is a continuous image of the cone over the closure of the planar
set of points having rectangular coordinates of the form (m~', n™'), where
m and n are integers and 0 < m < n.

If T is a compact totally disconnected metric space that has infi-
nitely many limit points, then X cannot be mapped continuously onto the
cone over T. Furthermore, if T is a compact totally disconnected metric
space that has only finitely many limit points, then X is not a continuous
image of the cone over T. Hence X is not a quasi-Peano continuum.

It is known that the hyperspace of closed subsets of each continuum
18 a quasi-Peano continuum ([3], Theorem 2.7, and [5]).

Definitions. For topological spaces X and Y, let C(X, Y) denote
the collection of continuous functions that take X onto Y, and let 4Y
denote the diagonal of Y x Y. Then, for functions f and g belonging to
C(X, Y), define the continuous function fxg of X xX onto ¥ XY by

I xg(zy, 3s) = (f(wl)7 g(ws))i
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and define the double graph of f and g to be the subset [f, g1 = (f x9)~'(4Y)
of X xX.

Double graphs are introduced in [2] and [7], and studied in [6]
and [8]. As in [8], we use the following three properties of double
graphs.

PROPERTY 1. Let f, g, a and f be elements of C(X); then fa = gf if
and only if a X B(AX) is a subset of [f, g].

Indeed, this property follows immediately from the definition.

PRrOPERTY 2. If f and g belong to C(X) and U 18 an open meighborhood
of [f, 9] in X x X, then there exist neighborhoods V,of f and V, of g in C(X)
such that [f', g'] is a subset of U for every f' in V,and g’' in V.

For the proof see [8], p. 190.

Definition. Let =, and =, be the projections of X x X onto its first
and second factors, respectively. A subset F of X x X ig said to be full
if 7, (F) = =y(F) = X.

ProPERTY 3. If f, g, a and B belong to C(X) for X connected and fa
= gB, then some component of [f, g] is full.

Indeed, it follows from Property 1, the continuity of a x 8, and the
fact that a and g map X onto itself, that a x §(4X) is a full connected
subset of [f, g].

Notation. Let p and ¢ be distinct points of the plane E*. We denote
the closed straight-line segment in E? from p to g by {p, ¢>. We assume that
the arcs from the vertex in each cone in E® (used in the proof of Theo-
rem 1) are straight.

THEOREM 1. If X is a quasi-Peano continuum and C(X) has a dense
directed subset, then X is an arc.

Proof. Since X is a quasi-Peano continuum, there exist a compact
totally disconnected metric space T and continuous functions y and u
such that y maps X onto 7'*v and x maps T *v onto X. There exists a com-
pact subset T, of T such that

(1) u takes the subcone T',xv of T *v onto X, and

(2) for each proper compact subset Z of T,, the subcone Z v of
T=+v is not mapped by g onto X.

Let o, be a continuous function of 7'xv onto T, %v.

Assume that T, is an infinite set. By considering three cases, we prove
that this assumption contradicts the hypothesis of the theorem. This
suffices to prove the theorem, since 7, being finite implies that X
is a Peano continuum ([9], Theorem 1.51, p. 26) and, therefore, an arc ([8],
Theorem 1). ’

Case 1. Suppose that 7, is a perfect set. For ¢« =1, 2, 3, 4, define
C; to be the Cantor ternary set on the interval ((2:-—1,0), (2%, 0))
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in E*. Define C to be the plane continuum
4
<(27_1)7 (8, 1))v Ul.oi*(2'i’ 1).
i=

Since T, is a compact totally disconnected perfect metric space,
there is a continuous function ¢, of 7',*v onto C.

For 7 =1,2, let D; be the Cantor ternary set on the in-
terval {(0,24—1), (1,2%—1)>; and, for ¢ = 3,4, let D; be the Cantor
ternary set on {(—1,2¢—3),(0,27—3)>. Define D to be the plane con-
tinuum

(DyUDy) %(0, 2) U(D3UDy) (0, 4).

Define o, to be a continuous function that takes C onto D.
Note that ¢ = 0,0,0,% is a continuous function of X onto D.
There exist mutually exclusive perfect subsets Z,,7Z, and Z, of T,
sueh- that '
3

1) U%,=1T,, and

i=1

(2) for each i =1, 2,3, there is a point p; of the subcone Z;xv of
T,»v with the property that u(p,) does not belong to ,u((Tl\Z,.)*'u).

For each ¢ = 1,2, let h; be a homeomorphism of D;*(0,2) onto
Z;%v that takes some point a; of (0, 1), (0,%+1)> to p;; and, for each
it = 3, 4, define h; to be a homeomorphism of D;*(0, 4) onto Z,_, v that
takes a point a; of {(0,%),(0,2+1)> to p,_;.

For each ¢ = 1,2, let k; be a homeomorphism of D;*(0,2) onto
Z,;_,*v that takes a point b; of ((0,?), (0,¢+1)) to py;_,; and, for each
1 = 3, 4, let k; be 2 homeomorphism of D,;*(0, 4) onto Z,_,*v that takes
a point b; of {(0,72), (0,¢--1)> to ps_;.

Using these homeomorphisms, we now define continuous functions
y and o of D onto T, *v. For each point z of D, select integers ¢ and j such
that z belongs to the domain of k; and to the domain of %;, and then define
y and o by y(2) = hy(2) and o(z) = k;(2).

It follows that f* = uy and ¢* = po are continuous functions of
D onto X.

No component of [f*, ¢*] is full. To see this assume there exists a com-
ponent F of [f*, ¢*] in D xD that is full. Note that the set {(0,3)} x D
separates D x D. Let H denote the closure of the component of the set
D x D\({(0, 3)} x D) containing {a,} x D. Let J be a component of FNH
with the property that a, belongs to z=,(J). Since J meets {(0,3)} X D
([4]), Theorem 1, p. 172), the continuum =,(J) in D contains a,. Let ¢
and ¢, be points of D such that (a,, ¢;) and (a,, ¢,) belong to J. Since J
is u.subset of [f*, ¢*], it follows that
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py(ay) = po(ey) = pu(py) and  py(as) = po(c) = u(p,).
Since, for ¢ = 1, 2, the point u(p,) is not in u((T,\Z;) *v), the points

¢, and ¢, must belong to D, *(0, 2) and D,*(0, 4), respectively. Hence the

continuum :,(J) intersects both D,*(0, 2) and D,*(0, 4) and, therefore,
contains the point b,. But this implies the existence of & point z of x,(H)
such that (2, b,) belongs to J, which is impossible, since g* (b,) is not a point
of f*(=.(H)).

Following \White ([8], the proof of Theorem 1, p. 191) we now write
f=f"pandg = g*¢. Observe that since ¢ x ¢([f, g]) is a subset of [f*, 4*]

and ¢z; = 7;(p X ¢), no component of [f,g] in X x X is full. It follows
from a short argument of \White ([8], the proof of Theorem 1, p. 191)
involving Property 2 that there exist neighborhoods V, of f and V, of ¢

in C'(X) such that no component of [f’, g'] is full if ' belongs to V,and ¢’

belongs to V,. According to Property 3, this contradicts the hypothesis
of the theoren.

Case 2. Suppose that T'; has exactly one isolated point y. By adjoining
the closed segment {(}, 1), (0, 2))> to the set D (defined in Case 1), extend-
ing y and ¢ to continuous functions each of which takes ({(,1), (0, 2))
onto the arcin T, v from y to v, and then applying the preceding argument,
we get a contradiction.

Case 3. Suppose that 7', has more than one isolated point. Let y,
and v, be distinet isolated points of 7', . Define E, to be a subset of the closed
interval (0, 1), (1, 1)> that contains the point (0, 1) and is homeomor-
phic to T,\{y,, y,}. Let E denote the planar set

(0, 2), (0, 5)) VE, (0, 2).

Applying the argument of Case 1, with F in place of D and the arcs
in T, *v from v to y, and ¥, in place of Z,+v and Z,*v, we again get a con-
tradiction.

Hence T, is finite and the cone T, v is locally connected. Therefore X,
being a continuous image of T,*v, is a Peano continuum ([9], Theo-
rem 1.51, p. 26). It follows from White’s theorem ([8], Theorem 1) that
X is an are.

THEOREM 2. Suppose that X is a quasi-Peano continuum. Then X is
an arc if and only if C(X) contains a dense directed subset.

This theorcm follows directly from Theorem 1 and [6], Theorem 2.
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