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0. Introduction. Totally umbilical submanifolds of Riemannian manifolds
with certain conditions imposed on the Weyl conformal curvature tensor of
an ambient space were investigated by many authors (see [6], [9]-[11], [7],
[1]). In this paper we give some results concerned with this subject. First we
recall some theorems of Olszak. He has proved that any totally umbilical
submanifold M of a conformally recurrent manifold N is also conformally
recurrent ([9], Theorems 2 and 3). Moreover, for M we have (see [10])

0.1) HC,0 =0,

where H = g, H" H®, g,, is the metric tensor of N, H" is the mean curvature
vector field of M, and C,,, is the Weyl conformal curvature tensor of M. In
consideration of the above result it is a natural question whether totally
umbilical submanifolds of conformally birecurrent manifolds are also conform-
ally birecurrent and satisfy relation (0.1). In the present paper we give some
answer to this problem. Namely, we prove the following

THEOREM. Let M be an analytic, non-conformally flat, totally umbilical
submanifold of a conformally birecurrent manifold N. The submanifold M is
conformally birecurrent if and only if the relation H = 0 holds on M and the
tensor field H' R, H* B, is proportional to the metric tensor of M.

1. Preliminaries. Let N be an n-dimensional Riemannian manifold with a
not necessarily definite metric g,,, covered by a system of coordinate neigh-
borhoods {U;(x")}). We denote by I7, R’,, R, and R the Christoffel
symbols, the curvature tensor, the Ricci tensor and the scalar curvature of N,
respectively. The indices p, g, r, s, 1, u, v, w run over the range {1, 2, ..., n}.
A tensor SL‘I'_'_'_',f, is recurrent [12] (resp. birecurrent) if the identity
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holds on N, where the comma denotes the covariant differentiation with
respect to the metric of N.

A Riemannian manifold N (n > 4) is said to be conformally recurrent [2]
(resp. conformally birecurrent [3]) if its Weyl conformal curvature tensor

-~

~ l -~ -~ : -~ ol
(1.3) Crauw = Rygqu— nTZ Gs Riu—9su Ry + 90 Ra —9gn Ryl

+ n—1)n=2) (GruGs —9r Gsu)

is recurrent (resp. birecurrent), where R,., = g,, R’

Thus, by (1.1) (resp. (1.2)), if N is conformally recurrent (resp. conformal-
ly birecurrent) and at some point xe N the tensor C,,, is non-zero, then on
some neighborhood U of x we have the relation

(14) ému.v = b, érsu
for some vector field b, on U (resp.
(1‘5) é’ﬂ”.l’w = auw C"ﬂ“

for some tensor a,, on U).

Let M be an m-dimensional manifold covered by a system of coordinate
neighborhoods {V; (y°)}. Suppose that M is a submanifold of N and let x’
= x"(y?) be its local expression in N. Moreover, let the induced tensor

| dab = 9rs Bay
be the metric tensor on the submanifold M, where
B} =B,/B’, B, =0,x", 0J,=0/0y".
In the following we shall use the notation
...l" — ’l rz "
B::...a,-Bal Baz "'Ba, .
We denote by I's, V,, K%, K. and K the Christoffel symbols, the
operator of covariant differentiation, the curvature tensor, the Ricci tensor
and the scalar curvature of M with respect to g,,. The indices a, b, c, 4, e, f,

h, i, j here and in the sequel run over the range {1,2,....,m}, 4<m<n.
The van der Waerden—Bortolotti covariant derivative of B, is given by

(1.6) VyB, = 0,BS+ 1% BL—B T,
The vector field H" defined by

1
H' = ;g‘b VbBa'
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is called the mean curvature vector field of M. Using (1.6) and the equation
Iy = (0. By + 1% B3) B, g* g,
we obtain on M the relation
(1.7) " g H B =0.
The Schouten curvature tensor H," of M is defined by
(1.8) Hy =V,B, .
If the tensor H,,’ satisfies the condition
(1.9) . Hy' =ga H',

then M is called a totally umbilical submanifold of N (see [14]).
Let N, (y,z=m+1,m+2, ..., n) be pairwise orthogonal unit vectors
normal to M. Then we have the relations

(110) 9rs Ny' Nys = &y, Grs Ny' st =0 (y # Z), Grs Ny'Bas =0
and

(1.11) 9" =Big*+) e,N/N,,
y

where e, is the indicator of the vector N,

For a totally umbilical submanifold M of N the Gauss and Codazzi
equations can be written in the form (cf, e.g., [11])

(1.12) Kasea = Ryseu B3% + H (gud Gbc — Goc Gbd)
and

(113) Ernu B’:c Ny" = Aaygbc—Abygac’
where

H=g,HH, A= 6,H,fi-z e;L,,,H,, H,=H N}g,,

and
Lazy = Nys(Va Nz')gn'
In the sequel we need the formulas (see [9] and [10])

(1.14) R BE H = }(H,g,.— H, 4.,
(115) Ve Kabcd = ﬁrnu,v gc“dve'i'Habcdn
(1.16) V,H = —HB/+Y e, A N.",

6 — Colloquium Mathematicum LV.1
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where H, = V,H and

Habcde = ‘} [Ha (gbc 9de —Yce gbd) + Hb (gad 9ee —Yac gde)

+ Hc (gad Ive —Yae gM) + Hd (gae 9Ibc —Yac gbe)] + He (gad 9oc —Yac gbd)

Let T,,, be a tensor field of type (0, 4) on a Riemannian manifold N.
Then we can define on N some tensor field of type (0, 6) in the following
manner:

Q (T)rauvw = Gro Tustu—9rw 7:,,,“ —9sv Twnn+gsw 7:»10
+gw Tws —Giw Twn—guv Tmrs-+guw Tmrs'
In the following, if T;'", is a tensor field on N, then we shall denote by
T, W the difference

1--Spolv,w

wr .
T:ll...s:.uw - T’l !

sl...sk.wv'

Throughout this paper all manifolds are assumed to be connected
Hausdorff manifolds of class C®. Whenever analyticity is supossed, it will
concern all objects involved.

2. Preliminary results.

LEMMA 1. Let M be a totally umbilical submanifold of a manifold N. Then
the Weyl conformal curvature tensor of M

(2.1) Cabcd=Kubcd—m_z(gndKbc+gbtKad_g¢chd—gbdKac)
tme 1)(m_2)(gugu—y¢yu)
satisfies the relation
22 Cabea = Canca— — 2(gad Tie + 9vc Toa —9ac. Toa — 9ba To)
.+(m— 1)(m_2)(9u9u-gac9w),
where
(2'3) C—'abcd = Entu aﬂ:i’
m—2 .
. = - = B
(2 4) Tbc Kbc n—2 Rrs be
and
—1)(m-2) ~
2.5) P=K+m—1)m-2g—""Dm=2 5

(n—1)(n-2)



TOTALLY UMBILICAL SUBMANIFOLDS 83

Proof. Adding to both sides of equation (1.12) the expression

1 K
_m(gad K +9be Koa—Goc Kpa—gba Kac)"'(m_ )(m—2) (9ad Goc —Joc 9ba)

and using (2.1) we obtain

~ 1
Casca = Rosu afc':r—m_z(gadKbc+gcha¢—gacKu—guK¢c)

K
+ (H+(m_ 1)(m_2))(yugu—g¢9u)-

But from this, by making use of (1.3), (2.3)2.5), it follows that relation
(2.2) holds true on M. This completes the proof.

LEMMA 2. Let M be a totally umbilical submanifold of a manifold N. Let
the condition

(26) érstu,[v.w] = Cow érsa‘u + ‘ZQ (é)nmvw

be satisfied on N, where c,,, is a tensor field and A is a function on N. Then
the relation

(2.7 Coabcae.s1 = Cef Canca+ (A-H)Q (Clabedes
holds true on M, where
(2.8) Ces = Cow BLy.

Proof. By the Ricci identity, the tensor field C,pqy. s satisfies the
equation

Cabcd.[e, n= (— C—ibcd Kjaej' + Ciacd Kjbef - Cidab K jees + C-icab Kjdef) g'j .
Applying the equation (1.12)} to the above identity we obtain

Cabcd,[e,f] =(—Cipea Rjae,f +Ciaa ijef —Ciaa R}cef
+Cica Rjdef) g’ —HQ (amdef’

where R, = R Bjy.;. From the last equality, using (1.11) and the defini-
tions of the tensors C,,.4 and R,,, it follows that

~ ~ ~~

éabcd.[e.f] = ( - Cp.mc Rqrvw + épnu waw - épurs waw
+ C~prrs ﬁquvw) (gN - Z ey N’p N,vq) afc.:ive‘;' - HQ (C—')abcdef .
y
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Now, the right-hand side of the above equation, by the Ricci identity,
(2.6), (2.8) and (2.3), takes the form

(29) C—m‘-le-ﬂ = Cer C-abcd +(A—H) Q (C)abcdef - Z e, N,’ N,* Boicaey
y

X( - C.pau ﬁqmw + épnu Rq.ww - épurs R'qu + 6}!"3 ﬁqu) .

The following equation is an immediate consequence of (1.3), (1.13) and
(1.10):

Z ey Nyp N)'q a:c“dve‘j' ému R-qrvw = GbcGae Ldf —9bdY9ae ch ~9bcYas Lde
y

+ 9bd gaj Lce’
where

| -
de = z ey Acy (Ady —;-——3 R,, Ny' Bds).
y

Substituting this into (2.9) we get easily

(210)  Cascage.s1 = Ces Cavea+(A—H) Q (Clascaes
+(Gbc 9ae — Ivd Ice) Lag —(9bc Gar — Iba 9cs) Lae —(9caGae — Gaa Gce) Lns
+(9ce 9ay —9aa9cs) Loe +(Gaa 9be — 9ba9ae) Loy —(Gaa Gbs — Iba9ay) Lee
+(Gac 95 — Ibe Gar) Lae —(Gac Gbe — Gbc Yae) Las-

From (2.2), by contraction with g%, we obtain
Cora g™ = Tyt ——(T—P)
abcdd = lag m—2 Gad-

Now, contracting (2.10) with g* and using the above equality and (2.2),
we find

1
211)  Typeny = Cer Tt —(T=P)Ces g

+(A-- H) (gae T,'fd _gaf ’I_;d +gd¢ 7}41 _gdf 720)
+(m—2)(94e Loy —Gay Lae +9ae Lis —Gay Lie) + 290a(Les — L;,),

whence, by contraction with g%, we get

. 2 m
(2.12) —Cesr (m—-2T_(m—1)(m—2) P)=4(L,,—L,,).
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Applying the relations (2.2) and (2.11) to (2.10), we obtain, after straight-
forward calculations,

4
Coabcdfe.n (2 m Cest m_2 (Les— Lfe))(gad 9vc = Gac Ibd)

- P
= Cef Copca+(A—H)Q(Clapcges —Ces m—1)(m—2) (Gad Ioc — G ac Iba) -

But the last equation, together with (2.12), leads immediately to (2.7).
Our lemma is thus proved.

Let M be a totally umbilical submanifold of a manifold N. Define on M
the following tensor fields:

(2.13) Sascdes = Ryseuo V (BEL),
(2.14) Duyed = R,gu, B H
and

(2.15) Dd = gbc Dm‘.

By virtue of (1.8), (1.9) and (2.14), we obtain from (2.13) the identity
(2.16)  Subcdesr = 9raDacve + 915 Dedae +9sc Dyage +91a Dabce +9es X avcas

where X, = ﬁrsu,v wca H® = Dapeg — Digpyc -
Relation (1.14), by covariant differentiation and using (1.8), (1.9), (1.12),
(1.13) and (1.16), yields

(217)  Dapes = 3(gbe Va Ha—Guc Va Hy) — Gao H" H* BE. R g+ HK gy
+gpa H" H* Ry BE — H? (Gog Gbc — G Gba)
—Z ey Ady (gbc Aay_gac Aby)-
y

If we put
(2.18) A, = H'H*BLR,,.,

and E, =4V,H,-) e, Ay A,,, then (2.17) takes the form
y

(2.19) Dovca = Goc Eaa—9oc Eva —Gad Ave + Gpa Aac + HK ypeq

~ H*(aa Gbc = Gac Iba)-
LEmMMmA 3. Let M be a totally umbilical submanifold of a manifold N
and let

1
(220) Topcses = Sapcdes — m_2 (9ad Soces = Gac Svaes + Ibc Sades — Iva Saces)

1
+(m— 1) (m—2) Ses (God Ibc — Gac Gba)-
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If at some point xe M we have H(x) = 0, then the tensor T, satisfies
at x the equation

(221) Tabcdef =49sa (gce Adb ~Yde Acb) + 9rbp (gde Aca —~Gce Ada)
+9c(Gae Ava—Ibe Aad) + 91a(Gbe Aac — Gae Ape)

2
+;__29ef(gad Ape+9bc Ad—Gac Ava— Iba Aa)

1.
“m_2 {9 [95a(Ade— AGue) +974(Ase — Agae)

+Gae Aga+9ae Asal

~0ba [97a(Ace = AGee) + 9 5c (Aze — Ague) + Gue Aset+ 9ce Agal
+9aa (9 (Ace — AGee) + g e (Ape — AGbe) + Gve Agct+ Gee Agp)
~9ac (915 (Ade — AGac) + 9 a (Ape — AGve) + Gve Aga+9ae Asp}

4
tm—Dm-2)

Where Sade_f = gchabcdef’ Sef = gadsadef and A = gbCAbc.
Proof. Since H(x) =0, equation (2.19) yields

(Ase— Agse) (Gad 9o — Gac Ind)»

Dapca = ve Eaa—Gac Eva —Gaa Abe + Gba Aue-
Substituting this into (2.16) we get
(2.22) Sabcaes = 9ra(9ce Aa— 9ae Acb + Ege 9cb — Ece Gba)
+97b(9ae Aca—9ee Adat Ece Yaa— Ede 9cd)
+91c(Gae Ava — e Adat Eve Gaa— Eoe Gba)
+974(Gve Aac — g.ae Ape+Ege goe — Epe Goc)
+9es (9ra Asc —Jai Abe +Ibe Eaa— ac Eva
—9bc Aaa+ Gac Ava— Ibi Eac + Gaa Epe)-
Contracting the last equation with g%, we obtain
(2.23) Sader =(M—2)(gar Ese+9gaEgetGer Ead) +2E s Gaa
—MAgigert+9ra(Ase— Agac) +9ra(Age— Agee)
+9ac Ara+9ae Apa+(E—A)gey Guss
which, by contraction with g, gives
224) S, =4(m—1)E, +2(m—1)(E— A)g.,+4(A;.— Ag;.),
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where E = g™ E,,. Substituting now relations (2.22)(2.24) into (2.20), we
obtain (2.21), completing the proof.

LemMMA 4. Let M be a totally umbilical submanifold of a conformally
birecurrent manifold N. If C,4,(x) # O at a certain point xe M, then on some
neighborhood V < M of x the relation

(2.25) Vi VeCabea— s Cabca = Tabcdes
is satisfied, where
(2.26) Gey = Gyy By .

Moreover, if M is also conformally birecurrent and C,4(x) # O, then at x
the equation

(2.27) P ij Tabcdef =P ef Tabcdij

is fulfilled, where P,, = l,;—a,, and |, is the tensor of birecurrency of Cgpq.
Proof. Since C,,,(x) # 0, we have on some open neighborhood U c N
of x the relation (1.5). Substitution (1.3) into (1.5) leads to

(228) ﬁrsm.vw — Qyw ﬁrsm = va (gru 9t —9n gsu)

1
+m(gm Mku—gn Mvwsu+gst Mvwru—gsu Mvwn)’

where
~ ~ 1 ~ ~
= - P,,=————(Ra,,—R,,).
Ml’Wﬂ Rn.vw avw Rﬂ and ow (n _ 1) (n _ 2)( avw .I?W)
Equation (1.15), by covariant differentiation, yields
(2.29) ViVeKapea = (Rrstu.vw) Bipcaes + Savcaes + Havedess

where Hgyey = Vy Hypeqe- Applying the relations (2.28), (2.26) and (1.12) in
(2.29) we find on V=UnNnM (if V # @) the equality
(230)  Vy V. Kupea—Ges Kapea = Por(Gad Gbe — Joc 9ba) + Savcdes
1
+m(9a¢ M. rbe—Gac Mespa+ 9o Moraa—9ba Megac) + Havcaes
- Haef (gad 9Ibc — Yac gbd)’
where M, ;. = M,,,, Bojs: and P, = P,,, B'¥. Relations (2.29) and (1.12) lead
to
Vi VeKaba—8er Kavca = Sabcaes + Havcaer — Hae g (Gad Goc — e Gba)

+ (Rrstu. ow — Qpw Rr.ma) 'a:c':ive“,;' .
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Contracting the above equation with g and making use of (1.11) we get -
(231) Vf Ve Kad - acf Kad = Mefad —Z ey N’s Ny’ (ﬁrsm.vw — 8w R'rsul) nde‘fv
y

—(m—1)Ha,;gog+ Sases + Hagess
where Hu.r = g* Hapeqey- On the other hand, from (2.28), by transvection
with Y e, NN, By and using (1. 10), it follows that
y

Z e, N, N,' Baey (ﬁmu.vw —ayw R.)
y

--l~ —
y

Substituting the last equation into (2.31), we obtain

m—2 1
(2.32) Vf VGK“- efKad=_M¢f¢d_—gd(zeyNy’Ny‘)B:;
n—2 n—2 >

vwst

—(n—m) Pef Gaa—(M—1)Ha,r gog+ Hoger + Sadeys-

Hence, by contraction with g%, we obtain

— 1 mn—m) | ~ ~ ’
M”“'"‘ZeyNy}Ny Bef ( 1)[ —2+——n—_1—](R,,,w—Ra,w) ef
y

n—2 1 1
‘2(m—1)(7’ V.K—-Ka.;)-im(n—2)Ha,,+§(n—2)(m+2) V.H
n-2
+—-—2(m_ 1)s,,.

Substituting the last equation into (2.32), we get

n—-2
Mefad = m— Z[V‘r V K“ a,,K,‘—S,‘,f

1
_Z(m_l)gd(Vf V,K—Ka,f—sd)]
n—
——[gu P, +gu(V,H,—Ha,)
+ga¢ V[ Hd+gd¢ Vf Ha]'

Finally, substltutmg this into (2.30), after stralghtforward calculations,
we obtain (2.25).
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Now we prove that relation (2.27) holds at x. Since M is conformally
birecurrent and C,,,(x) # 0, relation (2.25) takes at x the form

(2.33) Pef C.b‘_.d = Tm‘ef.
Multiplying this by P;; we obtain
PijPor Covca = Pij Topcaes-

But from the last equation we get easily (2.27). Our lemma is thus proved.

LemMa 5 (cf. [6], Theorem 2). Let M be a totally umbilical submanifold of
a conformally birecurrent manifold N. If C,.,(x) = 0 at a certain point x of M,
then Cm‘(x) =0 at x.

LEMMA 6. Let M be a totally umbilical submanifold of a conformally
birecurrent manifold N. Moreover, let M be also conformally birecurrent. If
Curca(X) # 0 and H(x) =0 at some point xe M, then the relation

A
(2.34) Aeg=—Ger =0

holds at x.
Proof. First of all we notice that in view of (2.21) the equations
Toscsesr = Tapeage and d Tobcses =0
hold at x. Therefore, from (2.33) we get the relations
PiCyuy=0 and (P—Ps)Cay=0,
where P, = g" P;;. Since C,.4(x) # 0, the above equations give

(2.35) Pi(x)=0
and
(2.36) (Poy—Pse)(x) = 0.

Contracting now equality (2.27) with g* and ¢ and using (2.21), (2.35)
and (2.36), we obtain

(237) 2P ef Ava—9ae Zfb =950 Zea—Gbe Zfd —9raZe
2
+Z(9spGae+95agbe) + P Ger (Zap+ Zpa— Zgyy)

1
) [(Ase — Agae) Psy +(Ape — AGse) Pag+ Agy P+ Ay Py,

—2904(Zse— AP )+ gbs(Z4e— APy)+ g 14(Z,. — AP,,)
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=294 Zes+9ve Zag+9ae Zos] +(m— H(m=2) (Age—Agse) Ppa
m(m+1)(m-—3) A
= m—1 P, (Abd—;gbd)
where
(2.38)

Zy=PyAy, Py=g°P,, P*=g"P, Z=g"Z,=P"A,.

Contracting (2.37) with ¢* and using (2.35), (2.36) and (2.38) we get

(2.39) (m=1)Zgoy—Z4e—(m*—m—1)Z 4+(m—1)AP,, = 0.
Alternating now the indices e and d in the last equation we obtain
(2.40) Zy=2,,.
Thus relation (2.39) takes the form
VA A
. =— —P,,;.
(241) Zy mged+m ed

On the other hand, alternating (2.37) in pairs of indices (e, b) and (f, d)
and making use of (2.40), we find

A A

Assume that the condition

A
(2.43) (Aw “m gu) #0

holds at the point xe M. Thus, by (242) and (2.43), we obtain at x

A
(2.44) P,=F (Aef-;gef)’
where F is a non-zero number. We prove now that at x the following
relations hold:
(2.45) PP, =FZ,

1
(2.46) PIZ, =—FAZ,

: 1
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and

. Z 1
(2.48) P'kzif=;(Pkf+-n—1Angf>'

Indeed, from (2.44), by transvection with P*/ and application of (2.38)
and (2.35), we obtain (2.45). Transvecting (2.41) with P* and making use of
(2.35) and (2.45) we get (2.46). Further, transvecting (2.44) and (2.41) with P¢,
and applying (2.38) and (2.41) we find (2.47) and (2.48). Now, the transvection
of (2.37) with P*/ and the use of (2.38) and (2.44)(2.48) give, after straightfor-
ward calculations,

(2.49) a(m)ZPy =0,
where a(m) = m*—4m® —3m?+22m—16. By (243) and (2.44) we have
(2.50) Py(x) # 0.

Thus equality (2.49) together with the last relation gives for m > 4
(2.51) Z=0.

By (241), (2.51) and (2.44), from (2.37) it follows that
(2.52) B(m) P.p Pyy+2(m—1)(Pyy Py + Pys Py.) = 0,

where B(m) = m* —4m® —m? +12m—8. Alternating in (2.52) the indices b and
fwe get P, Py = P,, P,,. Applying the last result in (2.52) we obtain P, (x)
= 0. But this is a contradiction with (2.50). Thus, at x we have (2.34), which
completes the proof.

3. Main results.

THEOREM 1. Let M be a totally umbilical submanifold of a manifold N.
Moreover, let M be a conformally birecurrent manifold. If on N the condition
(2.6) is satisfied, then the relation

(3.1) (A—H)Caeg =0
holds on M.
Proof. Assume that at some point xe M we have

3.2 Capa(x) #0.
Since M is conformally birecurrent, (2.7) yields
(3.3) Vef Cabea = (Z— H) Q(C)abcdefs

where V,; = I, — 1., —c,;, l,; is the tensor of birecurrency of C,.4, and c,; is
given by (2.8). From (3.3) it follows immediately that

Ver Cabeat Var Ceaey+ Vea Cogar = 0.
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But the last equation gives ([13], pp. 154-155)
Ver Cabea = 0.
Thus (3.3) can be reduced to
(A~ H)Q (Clapeaes = 0.

Hence by contraction with g°/ we obtain (3.1). Our theorem is thus proved.
Theorem 1 implies

CoRrOLLARY 1. Let M be a totally umbilical submanifold of a conformally

birecurrent manifold N. If M is also conformally birecurrent, then relation (0.1)
holds on M.

As is known [9], every totally umbilical submanifold of a conformally
recurrent manifold is also conformally recurrent. Using this fact and Corol-
lary 1 we obtain

CoroLLARY 2 (cf. [10]). Let M be a totally umbilical submanifold of a
conformally recurrent manifold N. Then on M relation (0.1) is satisfied.

THEOREM 2. Let M be a totally umbilical submanifold of a conformally
birecurrent manifold N. Let the conditions C,q,(x) # 0, H(x) =0 and (2.34)
hold at xe M. Then at x the equation

(3.4) Vf V¢ Cabcd = a,_,- Cma

is satisfied, where a,, is defined by (2.26).
Proof. Applying the relation (2.34) in (2.21), we obtain

Tabcdef (x) = 0.

But the last equation together with (2.25) gives (3.4), which completes the
proof.

The next result follows immediately from Theorem 2 and Lemma 5.

THEOREM 3. Let M be a totally umbilical submanifold of a conformally
birecurrent manifold N. If the relations

3.5) H=0

and (2.34) hold on M, then M is conformally birecurrent.

As an immediate consequence of Lemma 6, Corollary 1 and Theorem 3,
we obtain

THEOREM 4. Let M be an analytic, non-conformally flat, totally umbilical
submanifold of a conformally birecurrent manifold N. Then M is conformally
birecurrent if and only if relations (3.5) and (2.34) hold on M.

4. Examples. In this section we give examples of conformally birecurrent
totally umbilical submanifolds of a conformally birecurrent manifold satis-
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fying (0.1) or (2.34) and (3.5). We define the metric g, in R? (g > 4) by the
formula

-2 fa=b=1,
4.1) Tap = {cxp(F,) if a+b=gq+1,

0 otherwise,
where

2 2 . _
(42) Fo(x', ..., X0) = Fppyo(x', ..., X9 = {G"‘ )+B(%) ifa=2,

G(x?) otherwise,
2
4.3) G(x?) =kix®, B(x¥= —(kl)kl+ L x2,
k and | are constants such that
2
2 .
4.4 ke(0,1) and [*= Kk—1)

and a, b, ¢, d, ee{1, ..., q}. The reciprocal g* of g,, is clearly of the form

2exp(—2F,) ifa=b=q,
4.5) g""={exp(—-F,) if a+b=q+1,

0 otherwise.

The only components of the Christoffel symbols I, the curvature
tensor

Enbcd =§uR-'m =g—ae(adflex—acfgd+f{cf_erd-f{df§'c)’ ad = a/axd,

the Ricci tensor Ry = §* Rya., the Weyl conformal curvature tensor C,,.,
and its covariant derivative V,C,. not identically equal to zero are those
related to (see [4])

_ _ _ _ 1
F%z=1"§;=l"‘5.,=%kl, r§z= —H’
@ _ _ .
ry" = —zklexp(Fy—F;), TY{,=klexp(-Fy), I -,
4.7 Riz1; = —%(kD?, Rlzzq = —4[(kD*+2]expG,
R212,q+l—1 = —R-IZZq’
_ -2
@8) Rz = - 4250+ 21,
= _ kD?—2
4.9) C1212 =1, Vzcxzxz = —( I)kl ’

where ¥, denotes the covariant derivative with respect to g,,.
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In formulas (4.6) and (4.7) we adopt the convention that the Greek index
A ranges over the set {3,...,n—2} (empty for ¢ =4) and that repeated
indices are not be summed over. It is easy to verify that the relation 7, C,,,
= ¢, Cues holds on R, where ¢, = V., ¢ = —3G—2B. Thus R? with the
metric given by (4.1}(4.4) is conformally recurrent (cf. [4], Theorem 1).
Now we define in R" the metric g,, by

Jab if r=a and s =b,
9,s = 05,,, if r=a and s = §,
0 otherwise,

4.10)

where g, is given by (4.1)(4.4),

@.11) a(x!, ..., x%) = exp(—Ix?),
* 1 if a= ﬂ,
(4.12) Gas = {0 otherwise,
and
r,s,t,u,v,we{l,...,n}, a,b,c,d, e fell,...,q}

and
1, B,v,0e{g+1,...,n}, q=4,n—q=3.

For simplicity, we denote by N the space R” with the above defined metric.
We prove that N is a conformally recurrent manifold. By (4.10), the Christof-
fel symbols Iy of N satisfy the relations

I, if r=a,s=b, t=c,
(4 13) F — —%aaﬁgz'q—laz lf r =q—l’ s=a, t=B’
’ " (1/20) 5, 85 if r=a,s=2,1t=4,
0 otherwise,

where o, = 0,6. The only components of the curvature tensor R,,,, the
Ricci tensor R,,, the Weyl conformal curvature tensor C,,, and its covariant
derivative ¥V, C,,, which are not identically equal to zero are those related to

(4.14) R1212=R1212, R122q=R122q’ R212.q+1—).= _Rlzzq’
R _ _kP-2s
a22f = ak 9ap 0>
_ n—qkl?=-2
4.15 = -1
( ) _Rzz R;, 4 Kk’

4.16) Ciaiz=1
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and
2(2k—1)
(4.17) Vz C1212 —m.
It is easy to verify that the equation ¥, C,q, = ¥, C,q, holds on N, where
_2(2k-1) ,
wv—VlJ'ﬁ’ w_k(k_l)lx ¢

Thus N is a conformally recurrent manifold.
The submanifold V, of N defined by

xt=y, ..., xX2=y, x'=Cuy, ..., x"=C,

is a totally geodesic submanifold of N and the submanifold V,_, of N defined
by

x!=Cy, .., x=C, xl=4l, .., x"=u"9

is a totally umbilical submanifold of N ([8], Theorem 1), where C,, ..., C,
are constants. The submanifold V, (¢ > 4) with the induced metric g,, from
the metric g,, is conformally recurrent ([5], Theorem 1). Since V, is a totally
geodesic submanifold of N, the equalities (3.5) and (2.34) hold on V. Thus we
have

THEOREM 5. There exist conformally recurrent totally umbilical submani-
folds of a conformally recurrent manifold satisfying (3.5) and (2.34).

From the above theorem we obtain

CoRrOLLARY 3. There exist conformally birecurrent totally umbilical sub-
manifolds of a conformally birecurrent manifold satisfying (3.5) and (2.34).

The submanifold V,_, with the induced metric o(C,, ..., C) 5,,, is a flat
manifold. It is clear that on V,_, relation (0.1) is satisfied. Thus we have

THEOREM 6. There exist conformally recurrent totally umbilical submani-
folds of a conformally recurrent manifold satisfying (0.1).

From this theorem it follows that

CoROLLARY 4. There exist conformally birecurrent totally umbilical sub-
manifolds of a conformally birecurrent manifold satisfying (0.1).
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