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Abstract. Let (E; &, 1) be a measure space, where u is finite o-additive and
let F denote a finitely additive set function on & and vg(e) its variation on eeé.
The modulus of continuity wp of F is defined for u > 0 by

vp(u) = supvg(e),

where supremum is taken with respect to eed for which u(e) < u. With the use of
the modulus of continuity of a set function, the sufficient conditions for the set func-
tion F(e) = [f(t)p(dt) to have the property feL*?(E, u) are given in this paper.

Here ¢ denotes a p-function, not necessarily convex but satisfying condition (oo,).

1.1. In the present paper E will always denote & non-empty set, &
denotes a g-algebra of subsets on which a finite o-additive measure with
u(E) > 0 is defined. F or F(:) designates a real-valued set function defin-
ed and additive on &, vp(e) is its variation on a set e¢e¢ &, and v, denotes
its total variation i.e. for ¢ = E.

A modulus of continuity wp of a function F is called a function wF
defined for > 0 by

supvr(e) = wp(u),
where sup is taken for sets ee € such that u(e) < u. From the above defini-

tion it follows that wg(u) = vy for Eu> p(E), 0 < wp(u) < vp, im wp(u)
u—>0+
= 0 if and jonly if ¥ is absolutely continuous with respect to u, wy

is non-decreasing. If ¢ is a non-atomic measure, then wy is subadditive
ie. wp(u+u)) < wp(uy) + wg(u;). To prove it let us assume ee &,
0 < p(e) < 4,+u,. Hence for some &> 0, p(e) = u,+u,—e. Since one
of the numbers %, — ¢/2, u, — /2 is positive and u takes every intermediate
value on e¢ between 0 and u(e), there exist subsets e,, ¢,e¢ such that
€U ey =6, e,Ne, =B, ule;) = uy;—ef2, u(e;) = u,~—¢/2. Consequently

vp(e) = vp(er) + 5 () < w(Uy) + w(u,)

and the subadditivity of « follows.
Subadditivity implies that if wjp is flmte, then wg(u,)— wp(u,)
< wp(uy— u,) whenever u, > 4, > 0, and it follows that if 4 is non-atomic
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and F(:) is absolutely continuous with respeect to u, then wg(%) is a con-
tinuous function.

1.2. By a g¢-function we shall understand a continuous non-decreas-
ing function ¢: (0, oo)—>R,, assuming value zero only for u =0,
and tending to oo when u-—>oc.

The following conditions appear often in various problems in which
the ¢-functions are of importance.

(0,) ¢(u)/[u—0  whenever u—0,

(004) @(u)/u—>oc0  whenever u—oco.

Let us assume that ¢ is a convex g-function satisfying (0,) and (oc,).
Then we can construct a function complementary to ¢ defined by

¢ (v) = Sup(’wv—cp(u)) for v> 0.
u=0

It is an easy matter to show that ¢* is also a convex ¢-function satis-
fying (0,) and (oo,) and that (¢*)* = ¢. Let ¢ be a g-function. L°(E, u)
will denote the set of all u-measurable functions z(-) for which the inte-
gral [o(|z(t)|)u(dt) is finite; and L**(E, u) = {(-): iweL®(E, p) for

E

some 4> 0}.
If u-equivalent functions are considered to be equal, then L**(E, u)
is a vector space with the natural definitions of vector space operations.
This space can be equipped with a complete F-norm; if ¢ is a convex
g-function, then in L*?(E, u) a complete B-norm can be defined by

||y = inf {e > 0: f (p(lw(t)|/s) u(dt) < 1} (Luxemburg’s norm).
E

If besides the convexity of ¢ we assume that ¢ satisfies conditions
(0,) and (oo,), then we can introduce in L*®(E, u) another norm

llzll, = sup fw(t)y(t)y(dt) (Orlicz’s morm),
E
where supremum is taken over all measurable functions y such that
[ (ly@)u(dn) <1
b3

It is known that the inequalities .

ol < ol < 2l
are satisfied and the Holder inequality

| [ay @] < 1ol 1yl
E
holds (see [2], [4]).



Modulus of continuity 413

2.1. Let ¢ be a ¢-function, let u(e) = 0 imply F(e) = 0. Denote

N[V
0x = Z«p( o) ) wted,

where =: ¢, €, ..., ¢, i3 a decomposition of E into disjoint sets e;e &.
In the above formula and hereinafter in similar situations the term
| F (e;)| /1 (e;) is to be replaced by 0 whenever u(e;) = 0.

Riesz p-variation of a set function ¥ is called

supo,(¥F) = Varg(F).

If Varp(F) < oo and ¢ satisfies (oo,), then F(:) is absolutely contin-
uous with respect to u. This can be proved similarly as in [5], where
in addition convexity of ¢ is assumed. For a given ¢ > 0 let us take ¢ in
such a manner that Varg(F) < ce. Let for u > u,, (%) > cu. If for ee &
the inequality |F(e)| > u,u(e) holds, then

| (e)]
w(e)

and hence |F(¢)| < . Therefore if 0 < u(e) < e/u,, then |F(e)| < e.
Moreover, note that if (oo,) is replaced by liminfe(u)/u > 0, then
U—»00

Va.rR(F)th( ).u(e)> c|F(e)l,

proceeding in the same way as above we obtain only that F(:) is bounded
on &, i.e. Vary << oco. This occurs in particular in the limit case ¢(u) = u;
then Varg(F) = varg.

2.2. From the above considerations it follows that, assuming (oc,),
if Varp(F) < oo, then by the Radon-Nikodym Theorem F(e) = [ x(t) u(d?),

where x(-) is a u-integrable function on . Let ¢ satisfy condition (oo,).
The set of all additive set functions on & vanishing on sets of u-measure 0,
for which Varg(F)< oo, will be denoted by R?(E, u). By R'(E, u)
we shall denote the set R*®(E, u) = {F: AFe¢R*(E, u) for some A > 0}.
From the proceeding it follows that these are the sets of indefinite inte-
grals of functions belonging to some subset of u-integrable functions.

It is an easy matter to show that R**(E, u) is a vector space (with
the natural definitions of vector space operations) and that Varg(F)
is in R*(E, u) a modular [1] in the sense of [4].

Consequently, in R*?(E, u) a complete norm can be defined by

”F”“,) = inf {8 > 0: ValI'R(F/S) < 8}.

The proof given in [1] that Vargz(F) is a modular is based upon the
fact that Varg(F, a) = Varg(F,), Fo(e) = F(ena) is a set function abso-
lutely continuous with respect to u.
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The proof of absolute continuity given in [1] correct for a convex
¢-function, is slightly erroneous in the case when ¢ is an arbitrary ¢-func-
tion, since Varg(F, a) is not generally an additive set function.

In fact the proof makes use of superadditivity of Varp(F, a) only,
which occurs for every ¢-function.

3.1. We shall now deal with set functions of the form
(%) F(e) = [a(t)p(dl), ecé,

where z(-) is a p-integrable function.

We seek sufficient conditions in order that z< L*®(E, u) or < L?(E, u)
for some @-function, expressed with the use of the set function (x). Let
us note that (oco,) implies the existence of () for zeL*?(E, u).

3.2. Let ¢ be an arbitrary g¢-function satisfying ( oc,). If FeR*(E, u)
and is representable in the form 3.1 (*), then

xveL?(E, u), more precisely,
(%) [o(lz(t))) u(dt) < Varg(F).
E

To prove it let us define the following sets, for a > 1
et = {teE:2(t) >0}, e = {teE:xz(t)< 0},
e = {teE; x2(t) = 0},
ef ={teet:1< ()< a}, € ={teet:a"<z(l)<at}

for n =1,2,...,

1
€%, = {“”+’ —<e< 1}, ef, = {tee*: 0" < a(t) < a™"}
for n =1,2,...

The following inequalities hold

: |l(2)] \
o o™ uan <o torn=0,1,2,..
%
and
.7 Im(t)l —_n—-1 <+ . '
(i) v u(dt) < p(@™Mulet,) for m =0,1,2,...
£+ ¢
—-n
Moreover, from the definition of ¢} and ef, it follows that
| [2@®n @)
€,
(ii) pla™p(ey) < ¢ L‘_*.,.— pley) form =0,1,...
(en)
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and

| [ o) pu(ae)
+

(ii'y @(a™ Hu(et,) <<p( _nll(0+ ) )p(e+n) for n =0,1,...
Taking into account that the sets ef (m = +0, 4-1,...) are disjoint
we get from (i)-(ii’) the inequality

| Jo(tuids)

[ (2)] m
(i) f‘P( wa )ﬂ(di)<2¢(—w) uie),

etued m

where the summation on the right-hand side is for m = 40, +1,...
Define sets e,,m = 0, &1, ... similarly as e;, replacing in their defi-
nitions z(¢) by |z(?)| and e by e, then estimating as before we get

| [ =) p(dr)
t [
aiy . [olE2 )u(e;,),

Juan < 29’( e

m

where summation on the right-hand side is for m = 0, 41, ... Taking
into account that all sets ¢, e, are pairwise disjoint and adding the ine-
qualities (iii), (iii’) we obtain

[ ol E2) utat < Vara(m),

E

and hence, applying the Fatou’s lemma for a—1 we get (*).
If ¢ is a convex g-function, then by the Jensen inequality, it can be
shown that "

Varg(F) < [ o(lo(®)) p(d2).
E

In this case therefore, finiteness of the Riesz ¢-variation is the neces-
sary and sufficient condition for x¢L¥(F, u), and, moreover,

[ o(ie®)])n(@) = Varp(F).
E

Using the notion of the modulus of continuity of a set function we
can formulate another sufficient condition for zeL*®(H, p).

3.3. Let ¢ be an arbitrary ¢-function satisfying (oo,). Assume that
F(:) has the modulus of continuity @ = wy and that there exists a func-
tion w, defined for » > 0, with the following properties:

(a) w(u) < we(u) for u > 0;
(b) y(w) = wo(u)/w is non-inereasing for u > 0,

y(u) >o00 as u—0, y(u)»>0 as u—»oo;
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(c) denote a generalized function inverse to y by y_, i.e. denote y_, (%)
= sup{t: (1) > u}, then for some a > 1 the series

Z (a")y_.(a")

n=0
converges.

Under the above assumptions zeL*(E, u).
First observe that

varg(e) = [ la ()| p(dt).

With the notations of 3.2 denote e, — ¢ Ue; for n =0,1,2,...
From inequality 3.2 (i) for ¢; and similarly for ¢, we obtain

Zw,’f o[ ey < 2¢(a")u(en).

The inequality

" vary(e,) < wo(.“(en))
e, #(€,)

holds also for u(e,) > 0.
But y_, is non-increasing such that y_,(y(u)) > u, therefore y_,(a")

= u(e,) hence
DlplaMule,) <s

n=0

= v(u(e,))

t 1
Which means that f @ (—@) u(dt) < s+¢ (—E) u(E), consequently
E .
veL** (B, p).

3.4. We shall now consider a criterion given in 3.3 assuming that
a g-function ¢ satisfying (0,) and (001) is given and the function z(-)
in the integral representation ¥'(e fw Ju(dt) belongs to LP(E, u).

Assume that besides ¢, a convex g- functmn p also satisfying (0,) and (oo,)
is given. In order to present some condition on modulus of continuity
wp(%) we shall assume for simplicity that %]l < 1 in the first case and
iz, < 1 in the second, and apply the Holder inequality

vary(e f 1@ (2)] 1(d8) < @l tellge < Wtellye

varx(e) = f |2 ()] 22 (dt) < lllly [ Xellgpsy < Ntelliee) -
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Here y, denotes the characteristic function of e.
But as is known [2] for u(e) > 0

_ 1 _ 1
xellye = p(€)y_, (ﬁ;)-), xellpsy = ;"TT—)
e

Hence we get the following estimations of moduli of continuity

1
o(u) < w,(u), where w,(u) = 'mp_l(;) for u >0
and

1
o(u) < wy(u), where w,(¥4) = —— for > 0.

vi, (—i—)
Both these majorants are closely connected to each other, namely
0(%) < 0y (%) < 205(w),
since the following inequalities hold
u<p_(u)e (u) < 2u.

With no regard to the origin of the majorants w,, w, we can use
them as majorants of the modulus of continuity in the criterion of 3.3
(the assumption of convexity was needed only to establish the formulae
for majorants). To this end let us note that if

1
p(u)

w, (%)

1
y(u) = =9, (7), then y_,(u) =

We can therefore formulate the following criterion: If for some
g-function ¢ satisfying (oco,) the series

(+) D@ [y(a)]™

n=]

converges for some a > 1, and
1
op(u) < up_, (_J) for v > 0,

where y denotes a @-function, (0) = 0, then z<L*?(E, u).

3.4.1. Under the agsumption that ¢(u)/uy(#)|0 a8 u—oo, the con-
vergence of the series (+) for each a is equivalent to the convergence
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of the integral
R0
? du
uy(u)
3.5. Let ¢(u) = u% a>1 and let > a, y(u) = ¥’. As a majorant

(++)

1 ’ - .
we take wy(u) = uy_, (;) = u'#, where f#' is the exponent conjugated

to B, ie. 1/f+1/p =1.

The integral ( + +) is convergent and the criterion 3.4 leads us to
the following conclusion:

If wy(u)<u'?, then xeL*(E, u). A more general condition wp (%)
< ku'® obviously leads to the same conclusion. Let us note, moreover,
that if e L*(E, ), then from the Holder inequality we get the estimation
wp(u) < ', where 1/a+1/a’ = 1. Since g’ < a’, then ¥"* < 4'* for
0 < u <1 which proves that wp(w)<lu'" gives a weaker estimation
of the modulus of continuity than wg(w) << kul?.

3.5’. Let us now consider the characterization of the integral repre-
sentation F(e) = [x(t)pu(dt), where zeL*(E, p) = () L(E,p),a>1.

1<f<a
To give the necessary and sufficient conditions for this class of set.

functions F(e) it is possible with the use of modulus of continuity, whereas.
to characterize this in the case zeL°(E, u) the corresponding Riesz varia--
tions were needed.

3.5.1. The necessary and sufficient condition for zeL*~°(E, u),
a > 1 is that for every f,1 < f < a there exists a constant k, such that.
wp(¥) < kpu'”.

To prove it let us take an increasing sequence of exponents 1 < 8,
< a, Bp—a. Consider a pair of these exponents, then by 3.4.1 the
condition wp(u) < kpy w1 for k = 1,2, ... implies that zeL’k(E, u).

w .
Since L*~°(E, u) =N L% (B, p), weL*°(E, p).

If 2eL°°(E, ), then for every 1< < a,xe¢L’(E, u) hence wy(u)
< kgu'”. The above proven theorem was given in a slightly different.
form by J. Marcinkiewicz [3] for the particular case of E = (0,1) and g
being a Lebesgue measure.

3.5.2. Given a sequence of convex g¢-functions @,, @, ... satisfying
conditions (0,) and (o0,), with the following property:
The series

D 00 (@i (@) ™"y 4> 1,

n=1

converges for k' =1, 2,...
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oo

The necessary and sufficient condition for ze ) L%* (¥, u) is that for
k=1
every k there exists a constant I, > 0 such that

(+) wp(u) < lku(qvk)_l(%) for k =1,2,...

The necessity of (+) follows from the Holder inequality as in 3.4.
Sufficiency is a consequence of the criterion given in 3.4.
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