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Medial n-quasigroups were introduced and studied by Belousov [1],
p. 46-52. Varieties of idempotent medial quasigroups (i.e., 2-quasigroups)
were investigated by the authors [7]. In this article we prove that varieties
of idempotent medial n-quasigroups (shortly, IM-n-quasigroups) are
equivalent to varieties of affine modules over some rings. As a conse-
quence we infer that equationally complete varieties of IM-n-quasigroups
are equivalent to varieties of affine spaces over finite fields. In particular,
for even n, equationally complete varieties of IM-n-quasigroups coincide
with equationally complete varieties of idempotent medial quasigroups.

An n-quasigroup is an algebra with the =-ary basic operations
fyJay +eeyfn, where f; (1 =1,...,n) denotes the i-th inverse operation
for f; i.e., these operations satisfy the identities (*)

(1) I (wi—lv 1 (@7)y ‘”?+1) = ¥y,

(2) I (mi_l’ f(a1D), w?+1) = ¥.
Remark that (1), (2) imply the identities

(3) Fo(@™Y oy @51y Ful@}), whya) = @y

(4) Fe(@7% fi(@D)y @5ty @y 2R10) = @

for all ¢, ¥ such that (1<) i < k(<)
Medial and idempotent n-quasigroups are defined by the identities

(8) A @) f@ZD), ooy F@0D)) = Af (@), F(212), o) F(21))

and

(6) f(zy...,2) ==,

respectively. Identity (5) is often referred to as the permutability of f
with itself.

() Following Belousov, we denote the sequence a;, a;4), ..., a; by af.
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Let M be a (unitary right) module over the ring R. Every algebraic
(in other terminology: polynomial) operation of M may be written in

n
the form ) z;¢, with g, € B. Let A5 be the set of all algebraic operations
=1

which fulfil

n
ZQ: =1.
i=1

The algebra (M; Ag) is called an affine module over R (see [9] and
[6]). The class of all affine modules over a ring R is a variety denoted
by o« (R). Concerning affine modules, we need the following two facts:

LEMMA 1. (R*; Ay) is a free algebra in </ (R) with the free generai-
ing set

{(,...,0),(1,0,...,0),(0,1,0,...,0),..., (0,...,0,1)}.
(See, e.g., the proof of Theorem 2 in [6].)

LEMMA 2. Subvarieties of o/ (R) are the same up to equivalence as the
varieties </ (R), where R is any homomorphic image of R. (See the proof
of Theorem 4 in [6].)

The equivalence of varieties, a notion going back to A.I. Mal’cev,
may be characterized as follows:

LeMMA 3. Two varieties F and ¥ are equivalent if and only if for any
F-free F and 9-free G with the same free generating set there ewist a 1-1
mapping ¢ of F onto G and a 1-1 mapping { of the set of algebraic operations
of F onto that of G such that for any m-ary algebraic operation f and elements
A1y .eey G, of F the relation

(F(@1y o5 Bm))@ = (FE)(@19) -5 Omo)
holds (see [4]).
Following Kuro§, a variety is called Abelian if every pair of its (basic)
operations is permutable (see [3], p. 127, and [8], p. 92).
LEMMA 4. Any variety of medial n-quasigroups is Abelian.
In fact, f is permutable with itself by (56). Further, the permutability
of pairs (f, f1), (f1, /1)y (f1, fs) can be established by making use of (1)-(5):

(@ F(fa(al])y -oes Frlali)
D £,(F(F(Frlamh)y ooes Fi(a22), £(a22), ..oy F(a2D), FlAZD)s -5 Fla2D))
© £,(£(£(fr(at)), ati)y oons F(F2(aER), aZm)), £(a30), -y F(a5D))
81, (f(aD), ..., flai),
®)  filfa(@D), ...y FilalD)
2 £, (F(F1(F1(08D), +ve £2(aBD), Fu(01D), ooy Fu(aiR), Fu(aD)s ... Fulali)
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@ (fl(f(f1(al ), 313, . 7f(f1(am‘ a"m)) f1(afd), ...y ful a'm)

S ATACH R AT )}
(v) fl(fs(an °’fa(an1))
D fol (2 (01D, 1 (Fa(alD), - - o Falal))s Fr(GR), - oo o)) F2(aTD), -y S (al0)
B fa(£u(fy (@19, Falald), al2), -y i (@nas Falal), a23)), Fi(alD), ..., Fulalm)

@ (fl(al 1)y .o 1f1(a1”))

Analogously we get the permutability of each other pair of operations.
Let P, denote the ring of all fractions of the form

G( @1y eeey Tp_y)
..o (l—o— ... —a, )’

where g is a polynomial in variables 2, ..., #,_, with integer coefficients,
and %,,...,%,_,,! are non-negative integers.

THEOREM 1. The variety of all IM-n-quasigroups is equivalent to </ (P,).
Any variety of IM-n-quasigroups is equivalent to s/(P,) for some homo-
morphic image P, of P,.

Proof. It is proved in [6] that if a variety is Abelian, Hamiltonian
(i.e., in any algebra every subalgebra is a class of some congruence),
idempotent (i.e., in any algebra every one-element set is a subalgebra),
and regular (i.e., in any algebra two congruences coincide provided they
have a class in common), then it is equivalent to the variety of all affine
modules over some commutative ring. Next we show that any variety
2 of IM-n-quasigroups fulfils the four conditions listed before.

By Lemma 4, 2 is Abelian. In view of (2) we have

fi(@) =fi(mr veey @y f(®y o0uy @)y @y .00y w) =2,
showing that 2 is idempotent. Further, for

Uz, y,2) =fz(f1(w’ Byeeey2)yYy?Zyenny z);
the identity
t(r,2,2) =2

and the identical implication

(t(w’ Y,2) = z) > (® =y)

hold in 2. In accordance with the result of [5] this means that 2 is regular.

In order to prove that 2 is Hamiltonian consider a K € 2. From the
description of medial n-quasigroups by Belousov in [1] it follows that
there exists an Abelian group (K; +) having pairwise permutable auto-
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morphisms a,, ..., a, whose sum is the identical map such that

n
(7) F(@1y ooy @) = D) 0y
=1
for any =,, ..., 2, € K. Consequently,
(8) Fi(®@yy ey @) = D o —aya7") + 007
k#1

for ¢ =1,...,n. Now, (7) and (8) imply
(9)  S(fr(®1y @ay Byy vy Ban_o)y Fo(@an_sy Ty Tay o ovy Tan_y)y
Ja(@an_gy Ban_gy Bsy Bay eevy Ban_g)y ooy Fu(@ay Bgy oovy Byy_gy Tan_y))
=& — Lo+ &3 — T+ ...+ Ty,

Thus, any subalgebra L of K is closed with respect to (2n —1)-ary
alternating sums in the group (K; ), whence L is a coset relative to the
subgroup

TLo(c K) ={l—1,|le L}

with fixed I, € L.

It remains to check that the congruence of (K; +), determined by
L,, is also a congruence of the n-quasigroup K. First we show that each
of the automorphisms a;, a;' ({ =1,...,7n) maps L, into itself. Indeed,

(10) (C=l)a, =lay—lgar+f(loy ooy bo) =l =F(ly 1oy ..y o) =Y € L,y
(11)  (@—=l)ar* =la7' —loar +filos -y bo) —lo = filly boy -y L) —Lo € L,
and analogously for ¢ > 1. Now, if

a, =L—1lo+b, (a,beK;liel;i=1,...,n),

then (10) gives
fa?) = Yaa, = Y =D+ ) bia; € Ly+5(B7).

fm] [ =1
In a similar way from (11) we obtain
Ji(a}) € Lo+ f1(b7).

Thus, 2 is equivalent to «/(R) for some commutative ring K. We
can apply Lemma 3 to 2 and «/(R). Let R, be free in «/(R) with the
free generating set

Go =(0’ o-o’O)’ 01 =(1’0’ oo-,O)’ seey 0,‘=(0, 000’0,1)
and let Q, be a free IM-n-quasigroup with the same free generating set.
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Using the representation of R, in Lemma 1 we get

fl = Zw‘a,,
i=1
where a; € R and
n
(12) Za, =1.
i=-1
If
n
f}c =Zw‘ﬂ“ fOl‘ 1<j<'n,
i=1
then

6 = 6p = (f(eo’ ceey €y f1(€oy oony Coy €5y €gy o oey €g)y gy o nny eo))‘P
= ooa‘+...+(eoﬁﬂ+...+ejﬂ”+...+eoﬂ,n)aj+...+6°a,,
= (0’ ceey 0, ﬂ”aj, O, cesy 0),

whence
(13) Pyay =1 (j=1,...,n).

By a similar computation we get
(14) Ppyt+a =0 (j=1,...,n; k #j),
(15) D=1 (j=1,..,n).

k=1

The ring R contains all elements of the form

(16) 9(ary vy au ) B .. By

where g is a polynomial with integer coefficients and &, (j =1,...,n)
are non-negative integers. On the other hand, all elements of B can be
represented in form (16). Indeed, take an arbitrary o e R and consider
the 1-1 mapping ¢ (of Lemma 3) between algebraic operations of @,

and R,. For a suitable binary p we have p{ = ¢+ y(1— o). Let

(@, y) =f(P1(w’?/)a ooy Do, y))v 8 =wo+y(l —g) (6 =1,...

and suppose that
0 = Gi(a1y vy G ) B Bin,
Then, applying (12) and (13), we obtain

n

e= Zaigt(au ceey an—-l)ﬂf:l e ﬁ":'”

i=1

n
=(Za‘g‘(a1, seey Qa _l)ai‘l e (l_al'— e —an_l)””) ﬂ;i‘.. ﬂ;::',

i=1

where yu, = (m;a.x ki)—key v, = m?x ki, (81 =1,...,m)

4 — Colloquium Mathematicum XLII

y B)
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and the outer parentheses enclose a polynomial of a,, ..., a,_, with integer
coefficients. The case of p(,¥) = fi(p.(2,¥), ..., D,(2, ¥)) can be con-
sidered analogously, by using (14). Thus the mapping

9(@1y ey @y y)

Fgy
wkl se e w”'ill(l'—ml— e —.’Dn__l)

,-*g(an ey @, —1)ﬂf11'-'ﬂ:’1_11 nn

turns out to be onto; it is also homomorphic as we can easily verify
by making use of (12)-(15). The second part of the theorem is proved.

In order to prove the first part, we show that «/(P,) is also equi-
valent to some variety of IM-n-quasigroups. For this aim it is enough
to find, in any affine module over P, , n-ary algebraic operations f, f;, ..., f,
satisfying identities (1)-(6) and such that all operations of P, are algebraic
over the system {f,f,...,f.}- The desired operations are the following:

f(tn e ly) = U +... 44,2 -l+tn(1_wl_“‘—wn-l)?

1
filtyy eoon b)) =t — +ta(_ﬂ) Foeett —1<_ wH)+
41 ,

41
eee —1
P s I“”‘" ooy
1
1 —w’
t L LI ) t =t t
f”( 1 ! n) ll_wl_cno— 'n—1 + 2 1—501—...—{”“_1 +
—o,_ —o
+outt, L= +1 1

-ll—wl_..._'$n,_l nl—wl-—...—w“_l.

Indeed, identities (1)-(6) may be verified by computation. Further,
any binary operation of an affine module over P, is algebraic over
{fy f1y ---5 Ja}. This is clear for the operations

1 1
t,x,+1,(1— t,— +t,11— —
12+ 1o ( %)y 1w‘ + s( m‘)1

tl 1 +t.(1— 1 )o

1—.’81—...-—9)“_1 l_wl_...—wn_z

Let p, g € P, and suppose that ¢,p+i;3(1—p) and ¢,¢+¢,(1—g) are
algebraic over f, f;, ..., f, in some affine module over P,. Then

tl(P+Q)+ta(1—(P+Q)) =fa(f1(‘n by +ti(1—p),1,, ..., ‘a);

Fltay 810 +2(1—g)y tayoeeyta)y by ey ta)’
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t(—p)+t(1+p)
=f1‘f(z,fa(t11’+ts(1—'1’)1 Bay oeenbo)y Bayenny tz), tay ooy tz)’
t1(pg) +1:(1—pg) = (P +ta(1—p))g+1.(1—9).
Since P, is generated by

: 1 1 1
Diy ooy Bp_19—"9 0y ) ’
@, Ty, 1—0y—...—@,_,

the operation ;7 +t,(1 —r) is algebraic over {f, f,, ..., f,} for any r € P,,.
Finally, if all operations of arity less than [ are algebraic over {f, f,, ..., .},
then this is wvalid also for the l-ary operations, since for arbitrary
71y ...y 7 €P, we have

7 rat+nt+o,—1

7 1—2
tr ece tr= t'_‘ oo e t_ t_
Wt N f(lml"" +”w1+'1 Py y
Xy—1, )
t__ t_ t_ e e L)
-1 +'w,"" :‘11)

Now consider the variety 2, of all IM-n-quasigroups. By the second
part of our theorem there exists a homomorphic image R, of P, such
that 2, is equivalent to «/(R,). However, in view of the equivalence of
& (P,) to some variety of IM-n-quasigroups, P, is also a homomorphic
image of R, by Lemma 2. For the ideals of P, the ascending chain condition
holds, whence R, ~ P,, which completes the proof.

THEOREM 2. Equationally complete varieties of IM-n-quasigroups are
the same up to equivalence as varieties of affine spaces over finite fields,
except for GF(2) in the case of even .

Proof. By Lemma 2, any equationally complete variety of IM-n-
-quasigroups is equivalent to the variety of all affine modules over some
simple homomorphic image, i.e., over some factor-field of P,. We show
that every factor-field of P, is finite. It is known ([2], p. 68) that the poly-
nomial ring Z[x,,...,#,, ,] has only finite factor-fields. Z[x,, ..., Zs,_,]
is free with the free generating set {z,, ..., ,,_,} in the variety of all
commutative rings with 1. Hence any factor-field of P, is finite.

Conversely, let GF(q) be a finite field whose multiplicative group
is generated by a, € GF(q). Further, let as, ..., @, ;, be non-zero elements
of GF(q) with sum different from 1. Such elements do not exist only in
the case where ¢ = 2 and n is even. The mapping

9@y e0ey )
. Fai(l—vy— ... —a,)

> g(ary ey Gpy)ay’ ... a;f']‘.-l(l_al—“'—an)'
is a homomorphism of P, onto GF(q). This proves the theorem.

-
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COROLLARY 1. There exist countably many varieties (a8 well as equa-

tionally complete varieties) of IM-n-quasigroups for arbitrary n > 2.

COROLLARY 2. The set of all equationally complete varieties of IM-n-

-quasigroups 8 uniquely determined up to equivalence by the parity of n.

(1)
2]

(3]
(4]

(5]
(6l
(7

(8]
(9]
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