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Some results on boundary value problems
for multivalued differential equations *

by Giusepre Conti (Firenze) and Rita IannNaccar (Cosenza)

Abstract. In this paper we give some existence theorems for the multivalued boundary
value problem

(1 x'—A(t)xeF(t, x),
(2) Lx=r.

To do this we reduce the existence of solutions for this problem to that of a fixed point for a
multivalued map.

The main tools we will use is a spectral theory for multivalued maps for the convex case
and a selection theorem for the non-convex one.

Finally we give an application of our results and we show that, in this example, we cannot
apply the previous results of other authors.

1. Introduction. Consider the multivalued differential system

(1) x'—A(@t)xeF(t, x)
with the linear condition
2 Lx=r.

In [7] A. Lasota and Z. Opial reduced the existence of a solution for
problem (1), (2) to that of a fixed point for a suitably defined multivalued
map T. Then they employed the Kakutani-Ky Fan fixed point theorem to
prove, under suitably hypotheses, that problem (1), (2) has solutions.

Using the same fixed point theorem, M. Grandolfi [4] and, with a
different technique, L. E. Miller [8] extended the results of [7].

In this paper we calculate the asymptotic spectrum for the multivalued
map T as introduced in [5]. Using a subjectivity result given in [5], the
spectrum calculus allows us to carry out an existence theorem for problem

(1), .

* Work performed under the auspices of the C.N.R. (Italy).
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The paper is divided as follows. In Section 2 we collect all the notations
and definitions to be used throughout the paper. Moreover, we state a
spectrum property and some results which we need. In Section 3 we spend
some words to recall the definition of the map T and we calculate the
spectrum of T.

In Section 4 we give an existence theorem for problem (1), (2). In Section
5 we apply our results to establish the existence of solutions for some
multivalued boundary value problems and we give an example where we
cannot apply the results of [4], [7], [8].

Finally in Section 6 we give an existence theorem for problem (1), (2)
when F(t, x) has not convex values.

2. Notations and definitions. Let 4 = [a, b] be a fixed compact interval
of the real line R. Let R” be the n-dimensional Euclidean space with
Euclidean norm || -|].

Let C" be the space of all continuous mappings from 4 into R" with the

usual norm ||x||c = max||x(¢)|| and let (L*)" (1 < p < o) be the Banach space
ted

of all p-summable mappings f: 4 — R" with the norm ||f]|, = (_[Ilf(t)ll"dr)””.
4

(L*)" will denote the Banach space of essentially bounded maps f: 4 — R”
with the norm || f||, = supess||f(¢)||. L* and L* will denote (L?)! and (L®)!

ted
respectively.

Given two real Banach spaces E and E’, a multivalued map with non-
empty and compact values F: E—0E’ is called upper (resp. lower) semicontin-
uous (briefly us.c. resp. lsc.) if the set ly: F(y)nA # @} is closed (resp.
open) in E’' whenever A is closed (resp. open) in E. If F is ls.c. and us.c.,, then
F is said to be continuous. Notice that a multivalued map F with non-empty
and compact values is u.s.c. if and only if its graph is closed on E x E’ and F
sends compact sets into relatively compact sets.

An usc. map is said to be compact iIf it sends bounded sets into
relatively compact sets.

A multivalued map G: 4—0E with non-empty and closed values is
called measurable if, for every xeE, the distance from x to G(tf) is a
measurable function on 4.

F: E—oF’ is called quasibounded if it sends bounded sets into bounded
sets and

|F| = limsup M <+,

Ixl—+a [l

where 8 (F(x)) denotes sup ||yl
yeF(x)

The number |F| is said to be the quasinorm of F.
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Let F: E—oFE’ be quasibounded. We put

i;l(f)llyll
F) = liminf =>——
q(F) = liminf =

The spectrum of F is the set defined by
Z(F)={AeR: q(AI-F) =0} (see [5]),

where I is the identity on E.

In the sequel we shall use the following results: the first one, due to R.
Iannacci [5] for the convex case and the second, due to M. Kisielewicz [6]
for the non-convex case.

ProrosiTION 2.1 ([S]). Let E be a real Banach space and let F: E—OE be
convex-valued, compact and quasibounded. If A # O belongs to either of the
unbounded component of R\X(F), then AI —F is onto.

PropositioN 2.2 ([6]). Let X be a separable Banach space and let F: A
x X —0 X be a multivalued map with non-empty and compact values. Assume
that for every xe X, F (-, x) is measurable; for every te 4, F(t, ) is continuous
and there exists a function me L' such that 6(F (t, x)) < m(t) for xe X and ae.
teA. Then there exists a continuous mapping g: X — L' such that
g(x)(t)e F(t, x) for each xe X and a.e. teA.

3. The multivalued map T. Consider the multivalued differential system
(1), (2) under the following hypotheses:

(@ A: 4 - o/, where & is the algebra of nxn matrices which are
measurable and integrable on 4;

(b) F: 4 xR"—oR" is a multivalued map such that:

(bg) F(t, x) is a non-empty, closed and convex subset of R" for any
(¢, x)e 4 x R",

(by) for every fixed xeR", F(-, x) is measurable on 4,

(b,) for every fixed te 4, the map F(t, ) is usc. on R",

(b,) there are functions a, fe L! such that

sup |yl <a()+B@)|xl, xeR" ted ae.;
yeF(s,x)
(c) L is a linear continuous map from C” into R™ and relmL is fixed.
An absolutely continuous map xe C" will be called solution of (1) if it
satisfies (1) almost everywhere on 4.
In what follows we shall need the definition of a multivalued map
T: C"—oC". This has been done already (see e.g. [1], [4] and [7]), but we
will include it here for reader’s convenience.
From condition (a) it follows that there exists only one function
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U: 4 x4 — o which is continuous and such that
t
Ut,s)=1+ jA(r) Uz, s)dr,

where I is the identity on <.

Also U(-, s) is a continuous and compact linear operator from R” into
C", while the composition product Ly = LoU(-, s) is a linear operator from
R" into R™, and hence can be represented by an m xn matrix.

Let L} be a generalized inverse of Ly, ie, Ly L} Ly = L. For a fixed
se 4, let us define the linear operator I': (L!)"—oC" as follows

rfyg=-u(, s)L’{,L}U(t, 1) f(T)dT+ ]'U(t, 1) f(7)dr.

We recall that I' is continuous and compact also.
Let ceR" be a solution of Lyc =0. We put

Hr=U(t, s)(c+ Lyr).

Let #(x) be the set of all measurable maps y: 4 — R such that
y(®)eF(t, x(1)) a.e. on 4. We recall that under assumption (b) on F, the map
F: x—o F(x) is bounded from (L®)" into (L!)" with non-empty, closed and
convex values (see [7]).

For any xe C" we set

T(x) = I % (x)+ Hr.

The map T} C"—oC" is compact with non-empty, compact and convex
values (see [7]).

Let us set
(i) M = max||U(t, s)ll,
t,se4
(i) o, = [a(7)dr,
a4
(i) B, = [B)dr.
a4

We have the following result:
THEOREM 3.1. The map T defined above is quasibounded. If

1 t
(iv)  exp(—M8B,) > MIILY|| limsup ———(sup || LfU(t, 7)z(r)dl)),

lellc-'+ao”x“c zeF(x) a

then Z(T) (-1, +1).
Proof. For any xeC" we have &(T(x)) < |[Tllay +|[Hrllc+ B 1T Ixllc.
Dividing by ||x||c and by taking the limsup as ||x||c = +co0, we obtain
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|T} < ||} By. Clearly T sends bounded sets into bounded sets, hence T
1s quasibounded.

Now we shall prove that if (iv) holds, then 2(7T) < (—1, +1). Assume |4

2 1. Let yeAx—T'#(x) — Hr. Hence there exists ze #(x) such that y = ix
—I'z—Hr.
For any te 4 we have

lix @ < 1AL l1x @ < Iylic + 1 Hrlle + 11U (¢, DIl Iz (@)l dz +

+IIU (@, a)ll | LY IIIILJU(t 7)z(t)dr]].

Using (1), for any te 4 we have
lIx (@Il < ||y||c+||Hrllc+Mj||Z(T Jlldt+M||LYy ||I|LIU(t 1)z (7)d1]].
Since z(t)e #(t, x(t)) a.e. on 4, assumption (b,) on F implies that
Ix @l < Hyllc+IIHrI|c+Ma1+MIﬁ(T)IIX(T)I|d1'+MIIL |I||L§U(t 1)z(x)d1|.
By Gronwall’'s Lemma it follows that

X @I < (Wllc +IIHrllc + MIILE IIIILIU (t, 1)z (t)dt||+ Ma,) exp(M8B,)

for any te A.
By taking the sup for te 4, we obtain

exp(—MB,) (Ixllc — (|1 Hrllc+ Mo, + M ||L% nuLjU(r 1) z(7)d1|]) < Iyl

Therefore for any A with 4] > 1 we get

inf |yl
yedx— T(x)

= exp(— MBy) l|xllc — || Hrllc — Mo, — sup MLy IIIILIU(t )z (1) drf|.

xeF(x)

We have readily

q(Al — T) > exp(—MpB,)— M||L%}| limsup (sup ]]LjU(t 1)z (7)dtl|).

ﬂw~+m”||nfx

From hypothesis (iv) it follows that q(A1—T) > 0 for |4 = 1. QE.D.
CoRrOLLARY 3.1. Assume that

(iv) exp(—M§By) > M?||LE|{||LI| B,
Then Z(T) =(—1, +1).
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Proof. We observe that for any xeC" and for any ze % (x), using
assumption (b;) on F we get

M|\ Ly IIIILIU(t 1)z(z)de|| < MI|LY IIIILIIIMIIZ(T)IIdT

M || Lgll || L} (May + MB [|xllc)-

Now,

sup M||L} IIIILIU t, )z (t)de|| < MIILEIIILI (Mo, + MBy Ixllc)-

zeF(x)

Thus

1
limsup ——( sup M||L} ||||L U(t, 7)z(t)dr|) < M?|ILYI LI B, -

Ixlic=+ o [IXllc zexcn
Hence if (iv') holds, then (iv) also holds and Theorem 3.1 applies. Q.E.D.

4. An existence theorem. The previous spectral theorem allows us to
obtain an existence theorem for the muitivalued problem (1), (2).

We set V,={xeC" Lx=r} and &, = {fe(L")": problem (1): x
—A()x =f(t), (2): Lx =r is solvable}. Assume that (a) and (c) hold. From
(c) it follows that ¥, is a closed linear variety of C". Note that either &, = @
or %, is a closed linear variety of (L!)".

We suppose that (c) and

(H) FW)NL, #Q for every veV,,

hold.

Under these hypotheses, for any ve V, we can consider the non-empty
set defined by T,(v) = I'(# (v) » %)+ Hr.

LemMa 4.1. If (a), (b), (c) and (H) hold, then the correspondence x —o T, (x)
defines a compact multivalued map with convex values from V, into itself.

Proof. We observe that if f € &,, then I'f+ Hr is a solution of problem
(1", (2) (see [4]). In particular we have that T,(V,) c ¥,. Clearly for any xe V,,
the set 7,(x) is a non-empty and convex set.

Now we will prove that 7, has closed graph. Clearly it is enough to
show that T,— Hr has closed graph.

Let xeV,, zeC" and let {x,} < V,, {z,} = C" two sequences such that
el Fx)nZ,), n=1,2,..., and |Ix,~xllc = 0, ||z,—2z|lc — 0.

For any n=1, 2, ... there exists y,e #(x,) Nn.%, such that z, =1TIy,.

Since ||x,—x||c —# 0, we have that there exists a positive number K
(depending from x) such that ||x,|/lc < K, n =1, 2, ... Hence from hypothesis
(by) it follows that ||y, () < a(t)+KpB(t), ae ted and n=1, 2, ...

By Lemma 2 of [7] there exists a double sequence {i,}, n
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=1,2,..., k=nn+1, ... of real non-negative numbers such that
i im =1, Ay =0 for sufficiently large k (depending on n)
k=1
and the sequence

ac
J7n=zinkyk, n=12,...,
k=n

converges a.e. on 4 to a function ye(L')".

With a standard technique (see Theorem 2 of [7]), we can show that
y(tye F(t, x(1)) ae. on 4, ie. ye #(x) and 'y = z.

On the other hand, since .Z, is a linear variety, by construction we have
that y,e &¥,, n=1, 2, ... From the fact that %, is closed, it follows that
ye %, also. Therefore z = l'yeI'(ZF (x) N &,).

Finally observe that, since I' is compact, then 7, is compact also. Q.E.D.

We are now ready to prove an existence theorem for problem (1), (2).

THEOREM 4.1. Assume that hypotheses (a), (b), (c), (H), and (iv) (or (iv')
hold. Then problem (1), (2) has a solution.

Proof. We observe that a fixed point of the map T;: V,—oV, defined
above is a solution of problem (1), (2). Then in order to prove our theorem it
is enough to show that T, has a fixed point.

Since reIm L, there exists voe C” such that Lv, =r. Let us write ¥, in
the form V, = vy + W, where W denotes Ker L. Since L is continuous, W and
V, are closed. So that W is a real Banach space with the norm induced by C”.

For any we Wwe set S(w) = T,(w+vo)—vo. By Lemma 4.1 we have that
the correspondence w—oS(w) defines a compact multivalued map with
convex values from W into itself. Moreover, S is quasibounded since
T.(x) = T(x) for every x = V, and T is quasibounded.

For any Ae R we have

inf  [|Aw—yilc

yeT(w+vg)

q(AI—S) = liminf
wll e lIwll¢

= q(Al-T).

From (iv) (or (iv)) it follows that q(AI—T) > 0 for any Ae R with |4 > 1.

Since X(S) c 2(T) and 2(T) =(—1, +1), by Proposition 2.1 we have
that I—S is onto. Therefore there exists woe W such that woe S(wy), ie,
wo+ Vo€ T,(Wo+ o). Now the proof is complete. Q.E.D.

As consequence of this theorem we obtain the following result due to R.
Conti [2].

CoroLLARY 4.1. Consider problem (1”): x'—A{@)x=f(t, x), te4,
(2: Lx =r.
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Assume that
(I) Ae ¥;
(D |A@I < p(0), ted, pel’;
(ITT) x(¢t) = 0 is the unique solution of the problem x'— A(t) x = 0, Lx = 0;

(IV) f: 4 xR"— R" is measurable in t for every xe R" and continuous in x
for ae. ted;

(V) there exists ¢ >0 and a function v, integrable on A such that
1S (¢, x)| < v,(2), ted, |Ix]| < ¢ and

e 2 |lU(t, a) Lyrllc+(1+1U (e, a) LE L)) exp([ u(r) d) [ v,(v) dz.

Then problem (1”), (2) has a solution.
Proof. Let 4' = {te4: f(t, -) is continuous}. Define

[, x) for ted’, |Ix|| <o,
F(t, x) =4 f(t, x/lx]) for ted’, |Ix|| > ¢,
0 for teA\4', xeR".

Clearly ||F(t, x)|l < v,(t), ted, xe R", hence hypothesis (iv') of Corollary
3.1 is satisfied.

Moreover, ¥, = C", hence condition (H) is also satisfied. Thus by The-
orem 4.1 we have that problem (1) x'—A(t)x = F(t, x), (2) Lx =r has
a solution x,eC"

We claim that ||x,||c < ¢. Taking ¢ = 0 in the definition of Hr we have
IXollc < 1Tl +IIU (¢, @) Ly rlle < U (2, allllvlly +
+U(t, a)l[ U (e, @) Ly Lill[v,ll, +1U (¢, @) LErllc
<(1+1U @, g Ly LINIU (2, a)llllvlly +11U (¢, a) L rlic
<(1+)U(, a) LY L”)exp(ip(‘t)d‘t)ivo(t)d‘t+||U(t, a)L¥rc.

Hence from (V) it follows that [[xoic < 0.

This implies that F(t, xo) =f(t, xo), hence problem (1), (2) has a
solution. Q.E.D.

5. Some remarks. In [8] L. E. Miller shoved the following theorem:

THEOREM 5.1. Assume that conditions (a), (bg), (b;), (by), () hold. More-
over, suppose that

(b3) for all ¢ >0 there exists a function H,e L' such that sup {||yl:
yeF(t, x), |Ix|| < ¢} < H,(t) for every te4;

(H) there exists ¢ > 0 such that
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(,) V,~B, # @, where B, = {xeC": ||x|ic € o},
(Ay) V,nB, < W,={xeC" F(x)nZ, + 0},
(F,) 1| [H () de+U(t,a) Lyr < 0.

A

Then problem (1), (2) has a solution.

Proof. Observe that the closed and convex subset ¥, N B, is invariant
under the map T,: V,—oV, defined in Section 4. Since T, is compact, the
statement is an immediate consequence of the Kakutani-Ky Fan fixed point
Theorem. Q.E.D.

Remark. Observe that in [8] U(t, s) = @(t) ¢~ '(s), where ¢ is the
fundamental matrix for the linear homogeneous system x' = A(t) x with ¢(a)
= ]. However, Theorem 5.1 holds also in the general case.

The following results are an immediate consequence of Theorem 5.1.

CoroLLARY 5.1 (M. Grandolfi [4]). Assume that conditions (a), (b), (c)
hold. Moreover, assume that: (iv") ||I'| B, <1 and

(H) &, is non-empty and F(x) < &, for all xeV,.
Then problem (1), (2) has solutions.

CoroLLARY 5.2 (A. Lasota and Z. Opial [7]). Assume that (a), (b), (iv")
hold. Moreover, assume that: (c') L is a continuous linear operator from C" into
R, reR; () X —A()x =0, Lx = 0 has only the trivial solution.

Then problem (1), (2) has solutions.

In [4], [7] and [8] ||T]| is not explicited, hence it seems that these results
are not comparable with our results. However, we give now an application of
our results; we will see that in this example, we cannot use the theorems of

[4], [7] and [8].

5.1. Consider the following multivalued boundary value problem
(5.1) W' tueF(t,u,u), 3u@+u(m)=0, 3u'0)+u'(n)="0.

We assume that F: [0, n] x R*—oR is a multivalued map with non-empty,
closed and convex values satisfying (b,); (b,) and

(by) sup |l <a(®)+B@O)@*+wH)V? te[0, n], v, we R, with a, Be L'
yeF(t,0,w)

and B, =$+¢, £ =$(2—exp$)/(2+expd);

(by) ¥ (0, v, w)=F(m, v, w), Vv, weR.

By standard calculations we can prove that Ly, =2] and L} =41
Since M =1 and exp(—f,) > 3 B,, it follows that hypothesis (iv) is satisfied
and problem (5.1) is solvable.

Take yo = (

t); we have IT(yo)(mll =3=. Hence |[I]>3 and
COS
II]| By > 1. On the other hand H,(t) < a(t)+ () ¢, so that for any ¢ > 0 we

sint
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get ||| {H,(z)dt = ||[I'|| (2, + B, @) > |IT']| B1 @ > ¢. Therefore we cannot apply

A
Theorem 5.1.

6. The non-convex case. In this section we give an existence theorem for
problem (1), (2) without the assumption that F(t, x) is convex. However, we
must assume that, for every te 4, F(t, -} is continuous on R". The main tool
we will used is Proposition 2.2.

THEOREM 6.1. Suppose that (a), (b,), (bs), (c), (iv") and (H) hold. Moreover,
assume that, for every (t, x)e A x R, F(t, x) is a non-empty and closed subset
of R" and, for every teA, F(t,-) is continuous. Then problem (1), (2) has
solutions.

Proof. Consider the map

’

Gt, x) = {F(t, x) if ||x|:

<r
F(t, rx/lIxl))  if |Ix|| =~

’

where

M?||Lg|l |ILl| ay +||Hrllc + Ma,
exp(—MB,)—M*||LH|lIILI| B

<r

Clearly the map G(-, x) is measurable for every xe R", G(t, ') is continuous
for every te 4 and 6(G(t, x)) < a(f)+ B(t)r. Hence by Proposition 2.2 there
exists a continuous map g: R" — L! such that g(x)(t)e G(t, x) for each xe R",
ae. ted.

Let us consider the singlevalued boundary value problem

(1) X'—A{t)x=f(t, x),
(2 Lx=r,
where f(t, x) = g(x)(f). It is easy to see that the hypotheses of our Theorem

(see [3]) are fulfilled. Hence problem (1), (2) has solutions.
In particular the multivalued problem

(16) x'—A(@)xeG(t, x),

) Lx=r

has solutions. Since g(t, x) < a(f)+ B(t)||x]|, using the Gronwall’'s Lemma and
taking in account the hypothesis (iv'), it is easy to see that a solution x of

problem (1), (2) satisfies ||x]| < r.
So that x is a solution of problem (1), (2) and the proof is complete.
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