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On Mikusinski’s functional equation
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and M. Kuczma (Katowice)

Abstract. The conditional equation (4) is considered for funetions f: X — ¥,
where (X, +) and (¥, +) are (not necessarily commutative) groups. The general
solution of (4) is described and, in particular, the problem of the equivalence of equa-
tions (4) and (2) is investigated. '

1. Certain geometrical considerations have led J. Mikusiiski to the
functional equation

1) f@+y)[fle+y)—fy) —fl@)] =0,

where f denotes a continuous real-valued function of a real variable.
It is not very difficult to see that in such a case f must satisfy Cauchy’s
functional equation

(2) flet+y) =f(@)+f(y),

and hence it must be linear f(x) = cx. But it is less obvious that in fact
equation (1) implies (2) (the converse implication is trivial) without any
regularity hypotheses. (Then f need not be linear, equation (2) admits
also non-measurable solutions; cf. [1].)

It is still more interesting that this conclusion fails to hold if we
restrict the domain of f to the set of integers. (A suitable example is given
in Section 3.) This fact suggests the investigation of equation (1) for
functions f having the domain and range in more general algebraic struc-
tures than the additive group, resp. the field, of real numbers.

In the present paper we investigate equation (1), or rather slightly
more general conditional equation (4), in the case where -+ denote not
necessarily commutative group operations. We shall find also those so-
utions of (1) that do not satisfy (2), in the case where they exist.

2. Let X =(X, +) and ¥ = (Y, +) be two (not necessarily coui-
mutative) groups. Without a fear of ambiguity we shall use the same
symbol + to denote the operation in both groups. Similarly, the neutral
element in both groups will be denoted by 0, the inverse element to 2
will be denoted by —x, and 22 will denote x - .
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Suppose that in the set ¥ we have also another inner operation,
the multiplication, fulfilling the following condition

.(8) ab =0 if and only if a =0 or b = 0.

(Condition (3) is fulfilled e.g. if ¥ is a ring without divisors of zero). Then
equation (1) for functions f: X — ¥ is equivalent to the condition

(4) if fla+y) # 0, then f(a+y) = f(@)+1().

But in (4) the multiplication does not occur, and we may solve the condi-
tional equation (4) instead of (1), without assuming that there is a second

inner operation defined in Y.
Now suppose that f: X — Y is a solution of (4) and write

K ={zeX: f(x) =0}, K =I\K.

Leyma 1. K = (K, +) is a subgroup of X.

Proof. It is readily seen that 0e K and that x4y XK whenever
@,y IL. Now suppose that for an #¢ K we have —woe K', i.0. f(—a) # 0.
Then by (4)

(5) f(—2) =f[(—22)+ 2] = f(—2w)+f(2) = f(—24),
and again by (4) (since f(—22) = f(—z) # 0),
(6) f(—28) = f(—2)+f(—2).

Relations (5) and (6) yield f(—2) =f(—a)+f(—), ie. f(—a) =0
contrary to the assumption.

LEavA 2. If xe K’y then also —axe K'.

This is an immediate consequence of Lemma 1.

Leyva 3. If we K and ye K’y then x+ye K' and y+we K'.

Proof. By Lemma 1 —gze K. If we had #+ye K, then ¥y = (—a)+
+(z+y) would belong to K, and similarly y+ 2K would imply ¥

= (¥ +2)+(—2)e K.
Now we shall distinguish two cases.

(*) For every xe K’ such that 2x¢ K we have 2f(z) = 0.

(x+) There exists a ue K’ such that 2ue K and 2f(u) +# 0.

In particular, case (*) occurs if for every ze K’ we have 2xe¢ K'.

LeMyaA 4. In case (*) we have
(7) f2a) = 2f(@) amd  f(—a) = —f(a)
for every weX.

Proof. If ze K, then 2z¢ K (Lemma 1) and f(22) = 0 = 2f(x). If
ze K’ and 2ze K’, then by (4) f(22) = 2f(x). If ¢ K’ but 2z¢ K, then
by (*) we have f(2z) = 0 = 2f(%).
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It 5¢ K, then —ze X (Lomma 1) and f(—a) = 0 = —f(@). If ae K,

then by (4) and the first relation of (7)
f(@) = f(20—2) = f(22)+f(—=) = 2f (@) +f(—=),

whence f(—ax) = —f(a). '

LeEMMA 5. In case (*) relation (4) implies (2).

Proof. Take arbitrary z,yeX. If f(y) % 0, then by (4) and (7)

f@) =fl(~2)+(@+9)] = f(—2)+f(z+7) = —f(@)+fla+9y),
which implies (2). If f(x) # 0, then by (4) and (7)

f@) =fllz+y)+(—9] =fl@+n+f(—y) =fl@+y) —f¥),
which again implies (2). Finally, if f(#) = f(y) = 0, then by Lemma 1
fle+y) = ¢ and (2) holds, too.

LeMwMA 6. In case (**) there exvists a ceXY, ¢ 5 0, such that
0 for weXK,
¢ for ze K'.
Proof. Write f(u) = ¢. We have ¢ = 0 by the definition of K'.
Take an arbitrary xze K'. Then by (4)
(9) f(@) = fl(x—2u)+2u] = f(z—2u)+f(2u) = flo—2u),
since 2u e K, Similarly, .
f@) =flle—w)+u] =flo—u)+f(u),

(8) f(@) =

‘whence

(10) fle—u) = f(x) —f(u).
If we had

(11) f(@) #F(w),

then (4) would imply in view of (10) and (9)

fle—u) = fl(#—2u)+ul = flo—2u)+f(u) = f(@)+F(u),
whence, again by (10),
(12) J(@) —f(u) = f(@)+f(u).

Relation (12) yields 2f(u) = 0 contrary to the supposition. Consequently
(11) is impossible, i.e. f(x) = f(u) = ¢ for every ze K'. Hence (8) results
in view of the definition of K.

Let us note two further facts concerning case (*#).

LevMA 7. In case (**) we have x+ye K for »,ye K'.
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Proof. If we had a4 ye K’ for some x,ye K’', then we would get
by (6) and Lemma 6

¢ =f(@+y) = fl@)+f(y) = 20,

which contradicts the inequality ¢ # 0.
Leyra 8. In case (»*) K is a normal subgroup of X of index 2.

Proof(!). Take arbitrary ze¢ K, yeX. If ye K, then y+o—ye K by
Lemma 1. If y € K', then also —ye K’ (Lemma 2), and y +2—y = (y+)+
+(—9)e K by Lemmas 3 and 7. Consequently JK is a normal subgroup
of X.

Since for arbitrary @, ye ' we have ¥ —y = x4+ { —y)e K (Lemmas 7
and 2), the index of I is equal to 2.

Lemmas 5, 6 and 8 give the complete deseription of the solutions
of (4). We summarize them in the following

TaEOREM 1. If the group X has no normal subgroup of index 2, then
the condittonal equation (4) for fumctions f: X — Y is equivalent to the
Cauohy equation (2). If X has normal subgroups of indew 2, then the family
of all solutions f: X — XY of (4) consists of all solutions of equation (2) and
oll functions f of form (8), where ¢ = 0 is an arbitrary element of ¥, and
K < Y is an arbitrary set such that K = (K, +) 48 a normal subgroup of X
of imdex 2.

Proof. It follows from Lemmas 5, 6 and 8 that all solutions of (4)
must be of the form described above. Conversely, it is clear that all func-
tions satisfying Cauchy’s equation (2) fulfil also the conditional equation
(4). It remains to show that functions (8) also fulfil relation (4).

Since all groups with two elements are isomorphic, the operation
+ in the quotient group X/K = ({X, X'}, +) must be described by the
Tormulae
(18) K+K=K+K' =K, K+K =K+K =K'

In other words, we have #+ye K for z,ye K or #,y¢ K'y and ¢ +ye K’
for we K, ye K' or we ', y< K. Now suppose that f is given by (8) with
¢ # 0. Then f(x-+y) # 0 implies x--y< K’, whence either xe K, ye¢ K’
and

fle+y) = e = f) = flo) 1),
or we K', ye K and

J@+y) = ¢ =f(a) = fo)+f(¥).

Consequently relation (4) holds.
() Groups having subgroups of index 2 have been investigated by Z. Moszner

and J. Tabor in [6]. In particular, properties (I) and (II) in [6], p. 324, might also
boused in proving our Lemma 8 and Theorem 3.
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Note that if 26 7 0, then functions (8) do not satisty (2), since for
z,ye K' we have #+ye K and

fl@+y) =0 %20 = f(a)+f(y).

However, it may happen that 2¢ = 0 for every ceY.

THEORBM 2. If 2¢ = 0 for every oe Y, then the conditional equation (4)
for functions f: X — Y is equivalent to Cauchy’s equation (2).

We obtain the same conclusion if we assume that the division by 2
is performable in the group X.

TEEOREM 3. If every xeX may be writien in the form x = 24, &' e X,
then the conditional equation (4) for fumctions f: X — Y is equivalent to
Cauchy’s equation (2).

Proof. It is enough to show that X cannot have a normal subgroup
of index 2. Supposing the contrary, let K = (K, +) be such a subgroup.
By (13) 2X = {5: # = 22, v'eX} = K, and since the hypotheses of the
present theorem imply that X = 2X, we obtain finally X = K, which
is impossible. '

3. In this section we shall discuss a few examples.

1. X =Y = (R, +) is the additive group of real numbers. Accord-
ing to Theorem 3 the only solutions of the conditional equation (4)
[or, equivalently, of Mikusiniski’s equation (1)] are additive functions,
i.e. the solutions of (2): continuous ones f(z) = ez, and non-measurable
Hamel solutions (cf. [1]).

The same conclusion holds if the additive group of real numbers is
replaced by the additive group of complex numbers.

2. X =Y = (@, +) is the additive group of rational numbers. The
conclusion is as above with the exception that now we have no irregular
solutions (cf. [1]). The family of solutions of (4) [or, equivalently, of
(1)] consists of the linear functions f(z) = ¢z, ¢ rational.

3. X =Y =(Z, +) is the additive group of integers. Then the
family of solutions of (4) [or, equivalently, of (1)] consists of the linear
functions f(z) = ¢z (0 — an integer) and of the functions

0 for even z,
flw) =
¢ for odd «x
(¢ # 0 an integer).

In examples 2 and 3 ¥ may also be e.g. (B, -+); then the constant ¢
need not be rational resp. integral.

4. X = (R", ) is the multiplicative group of non-zero real numbers,
Y = (R, +) is the additive group of real numbers. Then the family of
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solutions of equation (4), or, equivalently, of equation (1), which in this
case takes the form

(14) fley)[fzy)—fly)—f(x)] =0, ay #0,
congists of the solutions of the Cauchy equation
(15) fzy) = f(@)+1(9),

and of the functions of the form

0 forxz>0,
o forxz<0,

(16) (@) =

¢ # 0 bei.ng a real constant.

= (#,,0)is the group of non-singular linear transformations.
of a real n-dimensional vector space onto itself (with the composition as
the group operation), ¥ = (Y, ) = GL(n, R) is the multiplicative group
of non-singular » X % real magtrices. In this case the conditional equation
(4) has the form

7) if f(T10Ts) # ¢, then f(T,0T,) = f(T1)f(T4),

where ¢ is the # X unit matrix. Since there is no other inner operation
defined in a natural way in Y, we do not consider equation (1).

Denoting by ap the matrix of the transformation 7, we obtain as
the general solution of (17) the two families of funetions:

(18) J(T) = g(ar)
and
(19) Ty = ¢ if detap> 0,

if deta, < 0.

In formulae (18) and (19) ¢ s e is an arbitrary non-singular real » X
matrix, and ¢: Y — Y is an arbitrary solution of the matrix functional
equation

(20) p(ab) = p(a)p(d).

The general solution of equation (20) has been found by M. Kucharzewski
and A. Zajtz [3)].
6. Let X = E = (B, ) be the multiplicative group of the matrices

1) [] -1 0 6_10 -1 o
0 = 6 = 017 2—051, €y = 0-'_17

and let ¥ = (R, +) be the additive group of real numbers. Equation (1)
takes again form (14), where now x, ¥ range over the set & of matrices (21).
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The only solution of equation (15) is the trivial one f(z) = 0. But
besides this, equation (14) has also three families of other solutions corres-
ponding to the three normal subgroups of the group E:

for & = ¢y, ¢,

0
flo) =

¢ for @ = 6., 6,

0 for 2 =g¢,¢
f(m) =| 0y Y2
¢ for z =eq,e,,
0 for o =2¢,¢
f(w) — l 0y 8>
¢ for z =e,e,,

where ¢ s 0 iz a real constant.

7. X = (R, -) is the multiplicative group of non-zero real numbers,
Y = E = (I, -} is the multiplicative group of matrices (21). Then accord-
ing to Theorem 2, all solutions of the conditional equation (4), which
in this case takes the form

if f(zy) # e, then f(zy) = f(@)f(4),
satisfy the corresponding Cauchy equation.

4. It might be inferesting to observe that in some cases very weak
regularity suppositions allow us to eliminate those solutions of (4) which
do not satisfy (2). The proof of this fact is based on a topological version
of a theorem of Steinhaus. In the case where X is a Banach space or
a linear topological space, such a version of the theorem of Steinhaus
was proved by W. Orlicz and Z. Ciesielski [7] and by Z. Kominek [2].
The proof given below is patterned on that found in [7] (ef. also [4]).

LeEMMA 9. Let X = (X, +, #) be a (not necessarily commutative) topo-
logical group (with the algebraic operation + and the family # of open sets).
If A, B c X are second category Baire scls, thew the set A+ B = {peX:
» =a-+b, acd, be B} has a non-void inlerior.

" Proof. Since A, B are second category Baire sets, there exist non-
empty open subsets G, H of X such that the sets G\ A and H\ B are
first category. Let ge G and he H be fixed and write

G°= _g+G, AD=—g+A, Ho =.H'—h, .Bo =B_‘h.

Then the sets G4\ 4, and H,\ B, are first category. Put 8§ = G, n H,.
8 is a neighbourhood of zero. For every te S write

Ut = S N (t—S).

U, is a non-empty open set (in particular, {e U,), and hence it is second
category ([b], Lemma 1).
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We have
UNA, e 8N4, c G\ A4,
and
UN(@E—By)-c t—=8)\(t—By) =1t~ (8\By) < t—(H,\ By).

Consequently the sets U;\ A, and U,\ ({—B,) are first category. There-
fore U, n 4, N (t—B,) must be second category, whence in particular

AyN({t—By) #0
for every te S. This means that ¢ = a,+ b, with suitable a,ed,, bye By, i.e.
(22) = —g+a+b—h, aecA, beB.
Since every te 8 may be written in form (22), we obtain

g+8+hc A+ B,
which was to be proved.

TEEOREM 4. Let X = (X, +, F) be a seoond category topological group
(not necessarily commutative), let ¥ = (Y, 4) be a group (not necessarily
commutative, either), and suppose that X fulfils the following condition:

) for every meighbourhood V of 0 we have | J nV = X.
Nl
If f satisfies the conditional equation (4) and the set K = {zeX: f(z) = 0}
is a Baire set, then f satisfies Cauohy’s equation (2).
Proof. We consider two cases.

I. K is second category. By Lemma 1, K = (X, +)is a group, whence
K+ K c K. By Lemma 9, K has a non-void interior and therefore it
must contain a neighbourhood V¥ of zero. Being a group, K must contain
nV for each positive integer #, whence KX = X. Thus f is identically zero
and in particular satisfies equation (2).

XI. K is first category. Suppose that f does not satisfy (2). By Lemma 5
such a solution of (4) may exist only in case (*#*). But, in view of Lemma 8,
in case (+*) we have K' = x+ K for arbitrary ze K'. Therefore K’ is
first eategory and so is X = K u K’, contrary to the supposition.

This completes the proof.

In examples 4 and 5 disciussed in Section 3 X may be regarded as
a topological group with the obvious natural topology. Also in examples 3
and 6 we may regard X as endowed with the discrete topology. In all
these cases condition (%) is not fulfilled. In order to show that the Baire
condition in Theorem 4 is essential, we shall exhibit an example in which
condition (%) is fulfilled, but there exist solutions of (4) which do not
satisfy (2).
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To this purpose we modify example 4. Instead of the topological
group (R, -, #,), where £, denotes the family of open sets in RB* in the
usual sense, we consider the topological group (R, +, #), where.# denotes.
the family of those subsets of the set R* = (—oo,0) u (0, co) which.
belong to £, and are symmetric with respect to zero. The topology £
is rather pathological; in particular, the topological space (R, #) is not
Hausdorff. But (R* -, #) is a topological group, since the functions zy
and ™! are continuous in the topology /.

It is not difficult to see that the closure A° of a set A in the topo-
logical space (R*, #).is equal to A° = 4 U (—4), where 4 is the closure
of A in the topological space (R*, #,). Hence it follows that a set 4 = B"
is first category in the space (R*, #) if and only if it is first category in
the space (R*,.#;). Consequently R* is second category.

Condition (%) is now fulfilled. But, besides the solutions satisfying:
equation (16), equation (14) has also solutions (16). However, in the case
of those solutions the set K = (0, co) is a second category set without.
the Baire property.
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