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1. Introduction. Let T: X — X be a measure-preserving transformation of
a probability space (X, .o/, p) and let h be a finite measurable function on X.
In [12] Tanny proved that the sequence (hoT")/n converges a.e. as n — oo if
it is bounded a.e. The proof uses some previous results of Tanny in the
theory of branching processes in a random environment [13]. The above
theorem is used in Kesten’s paper [6] to obtain the following general result:

n—1

if the sequence of ergodic averages n~' ) hoT* is bounded a.e., then it is
k=0

convergent a.e. (Another proof was recently given by J. Aaronson [2])

n
Moreover, in [6] Kesten proved that the sequence ) hoT* cannot tend to
k=0

n—1
infinity slower than linearly, i.c., we have liminfn™' ) hoT* > 0 ae. on the

n—x k=0

set |Y hoT*— oc}.
k=0

The aim of the present paper is to give simple proofs of the above
theorems (see the Proposition and Corollaries 1 and 2) as well as some
improvements and generalizations. We shall mostly consider conservative
transformations T which preserve a o-finite measure u. The ergodic averages
will be replaced by the ergodic ratios

Duh,g) = Y hoT¥Y goT*,
k=0 k=0

where g is a strictly positive integrable function.
The idea of proofs is to relate the properties of the sums of iterates

Y. hoT* to some properties of the filling scheme for h, especially when h is
k=0
not integrable. It should be noted that the method of the filling scheme

reduces in our case (where T commutes with the lattice operations) to the
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analysis of the partial supremum

]
H,= sup ) hoT"
0<I<nk=0
However, we shall use the language of the filling scheme because of its
intuitive value.
The negative part H~ of the supremum

n
H=sup ) hoT*
nz20k=0
can be interpreted as the amount of the antimatter A~ which remains after
the application of the filling scheme procedure to h (see Section 3). For
simplicity, suppose that T is an ergodic measure-preserving transformation of
a probability space and let h be a finite function. Then

lim ) hoT*=—o ae. iff [H™ >0

n—2ok=0

(cf. Theorem 1), while

n—1
imn™') hoT*= —o0 ae. iff [H™ =c0

n—a k=0

(cf. Theorem 3). Moreover, if {H™ >0, then H* <0 ae. and h= —H~
+H"—H*oT ae. (cf. Theorem 1). The proof of the theorem of Tanny is
then a simple application of these results (see the Proposition).

The author wishes to thank Professor C. Ryll-Nardzewski for his
encouragement in writing this paper.

2. Preliminaries. Throughout the paper we fix a o-finite measure space
(X, &, yy and a measurable non-singular transformation T: X — X (this
means that T~ ' Ae.o/ for Ae.o/, and u(T ' A) =0 if u(A4) = 0).

By a function we mean a measurable mapping f from X to the extended
real line. All inequalities and limit operations appearing in this paper are
understood to be u-almost everywhere, unless otherwise stated. For example,
we write limf, =f on A if lim f,(x) = f(x) for u-almost all xed4 < X.

Throughout the paper we fix a strictly positive u-integrable function g.

We say that T is conservative if for every function f with foT > fon X
we have foT=f on X. In this definition we can restrict ourselves to the

indicators f =1, of measurable sets (see [7], Lemma). Clearly, T is

a0
conservative iff for every non-negative function f the series ) foT* can take
k=0
on X only two values, 0 or .

By ¥ we denote the o-field of invariant sets (Ae % iff 1,,0T =1, on X).
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If u(A) =0 or u(A° =0 for every Ae%, then T is said to be ergodic. If
Ae.of, we set
A*= | T A.
k=0

If the restriction of u to ¥ is o-finite and if h is an arbitrary non-
negative function, we denote by E,[h| %] the conditional expectation of h
with respect to ¥ and to the measure pu.

We say that T is measure-preserving if u(T~! A)'= u(A) for all Ae . If
T is conservative and measure-preserving, then the operator h— hoT is a
positive conservative contraction on L, (u) (in the terminology of [10]). The
following theorem is well known (see [10], Chapter 4, Theorem 3.2, for h
integrable, and Chapter 4, Exercise 3.8, for arbitrary h).

HopPF ERGODIC THEOREM. Suppose that T is conservative and measure-
preserving and let h be an arbitrary non-negative function. Then the ergodic
ratios

D,(h,g)= Y hoT¥ Y goT*
k=0 k=0
converge on X (as n— o) to

2.1 E'[h| €] =E,[h| €)E,[g]¥].

When the restriction of u to % is not o-finite, the right-hand side of (2.1)
i1s understood as

E;. [hlf1 €)/E, L9/f1 €],

where f is an arbitrary strictly positive u-integrable function on X.
Clearly, the above ratio is well defined without the additional
assumptions on T. If T is ergodic, then simply E![h| %] = [hl|g.
We shall need the following supplement to the above theorem:

LEMMA 1. Assume that T is conservative. Let h be an arbitrary non-
negative function and let Ac /. Then E'[h| 6] =0 on A iff

a
Y hoT*=0 on A.

k=0

. ao
Proof. The function E'[h|¥] is always invariant, ‘while ) hoT* is

k=0
invariant since T is conservative. Consequently, it suffices to consider the

case where 4 = X. However, E![h|€] =0 on X iff h=0 on X iff
Y hoT*=0 on X,
k=0

which completes the proof.
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We shall frequently use also the following
Lemma 2. If T is conservative and if h is an arbitrary function, then

liminfhoT"<h on X.

If T is additionally ergodic, then
liminfhoT" = essinfh.

Proof. Let
f,=infhoT* for n=0,1,...

k=n
Then f, <f,., =f,0T and, since T is conservative, f,=f, on X for n
=1, 2,... Consequently,

liminfhoT" =supf,=fo <h on X.

If T is ergodic, then f, =f,0T is a constant lying between h and essinfh.
Hence f, = essinfh.

3. The filling scheme. The filling scheme associates to a finite function h
. the sequence (h,),>o which is defined inductively by

ho=h, hy,,=hoT—h; (n=0,1,..).

This sequence has the following intuitive interpretation. Let h* be a density
(with respect to the measure u) of a matter and let h~ be a density of an
antimatter. In the first step, the matter h* is transported by T and is
absorbed by the antimatter h~ so that we are left with the matter h;
= (hg oT—hgy)"* and the antimatter h; = (hg —hg oT)*. In the next step we
transport the remaining matter h{ by T and after an absorption we obtain
the matter h; and the antimatter h;. This procedure is continued
indefinitely.

The filling scheme may also be defined alternatively in the following
way. Let h be a finite function and let the sequence (H,),>o be defined
inductively by

(3.1) Hy=h, H,,,=h+H oT (n=0,1,..).

This sequence is increasing and related to the sequence h, by the following
formulas: h,=H,—H) ,, hf =H!-H} ,, and h, =H, (n=0,1,..),
where HY, =0 (see [8], Lemma 2). Let us put

H =IlimT H,,.

Then
H™ (x) =lim| H; (x) = lim| h, (x)
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represents the amount of antimatter which remains at the point x, and
a
H* (x) = imT H () = ¥ b ()
n n=0

represents the total amount of matter which passes over x during the filling
scheme procedure. (Such an interpretation is correct if at each step the
matter h; is thrown into the air and then falls according to the distribution
of hyoT)

Using (3.1) we can always write H =h+H"oT and, if H* (x) is finite,
the function h has the following representation:

(3.2) h(x) = —H™ (x)+H* (x)— H* (T%).

Since h and H™ are finite (0 < H™ < h7), it follows from (3.2) that the set A
= {xeX: H*(x) < oo} has the property 4 < T~ ! A. Therefore we obtain

Lemma 3. If T is conservative, then the set {H* < oo} is invariant.

Note also that if h < v—voT for a finite non-negative function v, then
H* <v (cf. [11], Lemma 5).

Finally, since the operator h— hoT commutes with the lattice
operations, it follows from (3.1) that

1

H,= max ) hoT*

O0<ismg=0

and

(33) H=sup ) hoT-

n=0gk=0

4. Pointwise behaviour of sums of iterates. In this section we shall
investigate various conditions equivalent to the fact that the sequence

Y. hoT* converges to infinity on 4 (Theorem 1) or is bounded on A

k=0
(Theorem 2).

THEOREM 1. Let h be a finite function and let Ae.of. Consider the
follpwing conditions:

(i) lim Y hoT*= —o0 on A;

n2wk=0

(i) limsup Y .hoT* <0 on A;

R—*® k=0
(i) E'[H |41 >0 on A;
(iv) there exist a finite non-negative function u with E'[u|%]>0 on A
and a finite non-negative function v such that h = —u+v—voT on A*;
(v) limsupD,(h, g) <0 on A.

R~
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If T is conservative, then conditions (1)iv) are equivalent and are implied
by (v). If T is conservative and measure-preserving, then all the above
conditions are equivalent.

Moreover, if T is conservative and if one of the above conditions holds,
then

(vi) H* <0 on A* and h= —H +H*—H*oT on A*.

Proof. Assume that T is conservative. The implications (i) = (ii) and
(v) = (1) are obvious.

(ii) = (iii). If (i1) holds, then H* is finite on A4 in view of (3.3). Thus it is
finite on A* in virtue of Lemma 3. Consequently, h= —-H +H*—H*oT
on A* by (3.2). Applying Lemma 2 we obtain

limsup } hoT*= - ) H oT*+H* —liminfH* o T"*!
n k=0 n

k=0 =

an
>—>Y H oT* on A*
k=0
Using once more the assiunption (1) we infer that

(4.1) Y H oT*>0 on 4,
k=0
which is equivalent to (iii) by Lemma 1.

(iif) = (iv) and (vi). If (iii) holds, then (4.1) is satisfied by Lemma 1.
Hence A = B*, where B = {H™ > 0}. Next, H* =0 on B and, by Lemma 3,
H* <o on B*. Consequently, H* <o on A* and, by (3.2), h=—H"
+H*—H*oT on A*

(tv) =(i). Assume that (iv) is valid. Then

a

Y uoT*=0 on A4
k=0
by Lemma 1, and
Y hoT*< — Y uoT*+v on A%
k=1 k

=0
which yields (i).
Finally, if T is conservative measure-preserving and if (iv) holds, then

4.2) D,(h, g) < —D,(u, g)+(v/§ogork)

on A*. By the Hopf ergodic theorem, D,(u, g) converges on X to E! [u| %],

which is assumed to be positive on A4, and (v/ ). goT*) converges to zero on
k=0
X. Therefore we have (v), and the proof of the theorem is completed.
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The following corollary implies the result of Kesten ([6], Theorem) that
for a measure-preserving transformation T of a probability space and for
a finite function h

n—1 n
liminfn~! ) hoT*>0 on {lim ) hoT*= co}.
=0

n—aw k R—=o k=0

CoroLLArY 1. If T is a measure-preserving transformation of a prob-
ability space and if h is a finite function, then

n—1 n
liminfn™!' ¥ hoT*>0 on {liminf } hoT* > 0}.
n—w k=0 n—wo k=0

Remark 1. If T is conservative, ergodic and measure-preserving and if
heL,, the implication (iii) = (vi) in Theorem 1 follows also from a result of
Neveu ([8], Proposition 3).

The next theorem is similar to a result in topological dynamics (see [4],
Theorem 14.11, (3) and (4)).

THEOREM 2. Assume that T is conservative and ergodic. Let h be a finite
function and let Ae.of, u(A) > 0. Then the following conditions are equivalent:

(i) sup| Y, hoT < on 4;

nz0 k=0
(i) (sup| Y hoT*)e L, (w);
nz0 k=0

(iii) there exists a non-negative function ve L, (u) such that h =v—voT
on X.

Proof. Since the implications (iii) = (ii) = (i) are obvious, we prove only
(i) = (iii). Clearly, we may assume that A = X. It follows from (i) that

limsup )} hoT*> —o0 on X.
n k=0

Consequently, H- =0 on X by Theorem 1. On the other hand, it follows

from (i) and (3.3) that H™ is finite on X. Hence h=H*—H*oT on X by

(3.2). Now, by Lemma 2,

liminf } hoT* = H* —limsupH*oT"*' = H* —esssupH*.
n k=0 n

Using once more the assumption (i) we infer that H* e L., which gives (iii)

and completes the proof.

5. Pointwise behaviour of ergodic ratios. In this section we shall exhibit
some conditions equivalent to the fact that the sequence D,(h, g) converges
to infinity on A (Theorem 3) or is bounded on A (Theorem 4).

7 — Colloquium Mathematicum 52.2
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Let h be a finite function and let
f = limsup D, (h, g).

If T is conservative, then
n+1 n+1 n+1 n+1
foT =limsup(( Y hoT*—hy Y. goT)(Y goT" ¥ goT¥
n—o k=0 k=0 k=0 k=1

= limsupD,,,(h,g9)=f on X,

n—@o
i.e, f is invariant on X.

THEOREM 3. Assume that T is conservative and measure-preserving. Let h
be a finite function and let Ae /. Then the following conditions are equivalent:

(i) lim D,(h,g) = —oc0 on A;

n—x
(i) E'[H™ |%] = o on A;
(iii) there exist a finite non-negative function u with E' [u|%] = o on A
and a finite non-negative function v such that h= —u+v—voT on A*.

Proof. Clearly, we may assume that 4 = A* = X. If (i) holds, then H*
<o on X and, by Theorem 1, h=—-H +H*—H*oT on X. Hence

D,(h,g9)= —D,(H", g)+(H*/k)fogoT")—(H+OT"“/kiogoT")
on X. By the Hopf ergodic theorem,
‘ limD,(H ,g)=E'[H |4¥] on X.
Next,
Hm(H*/kZ":ogoT")=0 on X
and
liminf(H*oT"“/kzn:ogoT")=O on X
by Lemma 2. Thus, using once more the assumption (i) we obtain (ii).

Clearly, (ii) = (iij) by Theorem 1. Finally, if (iii) is valid, then, by (4.2)
and the Hopf ergodic theorem,

limsup D,(h, g) < —E'[u| 4] = — oo,

which yields (i) and cofnpletes the proof.

The following result was essentially proved by Tanny [12] for a
measure-preserving transformation T of a probability space.
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PROPOSITION. Assume that T is conservative and measure-preserving. Let v
be a finite non-negative function and let Ae o/. Then the following conditions
are equivalent:

(i) sup(voT"*!/ Y goT*) <o on A;
nz0 k=0

(i) lim (voT"*!/ Y goT*) =0 on A;
n-x k=0

(ii1) there exists a finite function w such that w > v on X and we have
E![[woT—w| |%] < on A.

Proof. Since the function
f =limsupD,(voT—v, g) = limsup(voT"*!/ Y goT¥
n n k=0

is invariant, we may assume that 4 = A* = X.

(i)=(iii). Let A, ={N—1<f <N} for N=1,2,... The sets Ay are
invariant and pairwise disjoint. Since, by (i), f is finite and non-negative on
X, we have

U Ay = on X.
Put

yh=voT—v—Ng and yH =sup ) yhoT

nZz20k=0

Then

D,(xh, 9) =(voT"“/i goT")—(v/Zn: goT*)—N.
k=0 k=0

It follows from Lemma 2 that

5.1 —® < —N =liminfD,(yh,g9) on X,

and the definition of Ay implies

5.2 limsupDy(yh, g) <0 on Ay.

Now, by (5.1) and Theorem 3 we have
(5.3) E![VH |4] <o on X,

while (5.2) and Theorem 1 imply that yH* <o on Ay and yh = —yH
+yH*—yH*oT on Ay. Thus

(v+yH)oT—(v+yH') = Ng—yH~ on Ay
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by the definition of yh. Since ge L,, we infer from (5.3) that
E![[(v+yHY)oT—(v+yH*) | €] <00 on Ay.
Now, it is clear that the function

w = Z (U+NH+) IAN
N=1
has the desired properties.

(i11) = (i1). If (ii1) holds, then the limit
lim(woT"*!/ ) goT*)=1limD,(woT—w, g)
. n k=0 n

exists on X by the Hopf ergodic theorem. By Lemma 2 this limit is equal to
zero on X. Since 0 < v < w, the assertion (ii) is obvious.

Finally, the implication (ii) = (i) is trivial.
If Ae o/, we denote by 7, the vector lattice consisting of all finite
functions v such that

sup(jvloT"*!/ Y goT*) <o on A.
n=20 k=0

Remark 2. The implication (i) = (ii) of the Proposition was obtained
by Tanny ([12], Corollary 5) for a measure-preserving transformation T of a
probability space. The proof given by Tanny goes also through the condition
(iii). Namely, in the notation of [12] and [13], the function w > v satisfying
woT—welL, (T is assumed to be ergodic) is of the form w = —log(1 —q(&)),
while v has a representation v = —log(1 —po(&o)) (see [13], the proof of
Proposition 5.7, and [12], the proof of Theorem 1).

We give an example, based on an example in [1], p. 172 (which in turn
is adapted from [12]), showing that in general the function w in the
Proposition cannot be taken to be equal to v.

Example. Let t be an ergodic measure-preserving transformation of a
probability space (2, S, P) and let ¢: 2 — N be such that j @dP < o and
f@?dP = . Let (X, o, u, T) be a tower on (2, S, P, 7) with ¢ as the
height function, i.e.,

X={w,n:nz2leow=n}, A= \07(60{(;32 n}, n),
n=1

u=(1/C) f: Pl[(Sn{p=n},n, where C= [¢pdP,
n=1

and

(w,n+1) if ¢(w)2n+1,

T, n = {(tw, 1) if ¢(w)=n.
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Then T is an ergodic measure-preserving transformation of the probability
space (X, o, u) (see [5]). Let w(w, n) =n and let

n if l(¢(w)=1(n),
0 otherwise,

v(w, n) = {

where I(k) =1 if k is odd, and I(k) = O if k is even. Clearly, 0 < v <w. An
easy calculation shows that voT—v¢L,, w¢L;, but woT—welL,. Thus,
both v and w belong to Jy.

Note also that if T is an ergodic measure-preserving transformation of a
probability space and if f is a non-negative integrable function, then the
maximal function

n—1
f*=supn ') foT*

nz1 k=0

always belongs to Jy. Indeed, it suffices to check this for g = 1, in which
case

sup(f*oT 1/ goT*) =sup(f*oT"* /(n+1)) < 2f*.
nz0

n20 k=0
However, by Ornstein’s theorem (see [9]), f*eL, iff feLlogL.
The implication (i) = (i1) in the Proposition is a particular case of the
following ’
THEOREM 4. Assume that T is conservative and measure-preserving. Let h
be a finite function and let Ae of. Then the following conditions are equivalent:
(i) sup|D,(h, g)) < o0 on A;

nz0

(ii) lim D,(h, g) exists and is finite on A,

n—a
(iii) there exist a function u with E' [|u| | 4] < oo on A and a non-negative
function ve I, such that h=u+v—voT on A*.

Proof. We may assume that A = A* = X. Since the implication (ii) = (i)
is trivial, and (iii) = (ii) by the Hopf ergodic theorem and by the Proposition,
we prove only (i) = (iii). Let 4; = {f <1} and let Ay = {N—1<f < N} for
N =2, 3,..., where f = limsupD,(h, g). The sets Ay are invariant, pairwise

disjoint, and
UAy=X on X
N=1

by the assumption (i). Put

yh=h—Ng and yH =sup ) yhoT".

nZ20k=0
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It follows from (i) that

(54 — o <liminfD,(yh,g) on X,

and the definition of Ay implies
(5.5) limsupD,(yh, g) <0 on Ay.

Now, by (5.4) and Theorem 3 we have
(5.6) E'[\H |¥] <o on X,

while (5.5) and Theorem 1 imply yH* < o0 on 4y and yh= —yH™ +yH*
—yH*oT on Ay. Thus

(5.7 h=Ng—yH +yH*—yH*oT on Ay
and, since gelL,,
(5.8) E'[INg—yH™||6] < on X
by (5.6). It follows from (5.7) that
nH*oT /Y goT* < |D,(h, g)l+D,(vH™, 9)+(vH*/ Y. goT*)+N
k=0 k=0
on Ay. Thus, using (i), (5.6), and the Hopf ergodic theorem we infer that
(59) NH+ E-G/;N.
Now, it follows from (5.7)+5.9) that the functions

u= Z (Ng_NH—)lAN and v= z ~H+ IAN
N=1 N=1

have the desired properties.
The following corollary was proved in [6], p. 211.

CoroLLARY 2. If T is a measure-preserving transformation of a
probability space and if h is a finite function, then the limit

n—1
limn=! ) hoT*
n—w k=0
exists on the set
n—1
{supjn™' Y hoT* < oo}.
n=1 k=0

Finally, we shall describe the functions h appearing in Theorem 4 in
terms of 7 x. For simplicity, we consider only the ergodic case.

CoRroLLARY 3. Suppose that T is conservative, ergodic, and measure-
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preserving. Let h be a finite function. Then the following conditions are
equivalent :
(i) lim D,(h,g) =0 on X;
(i) there exists an increasing sequence (v,),>o of non-negative elements of
Ix such that
lim {|h—(v,—v,0T)|du = 0.
n—-woX
Proof. (i) = (ii) (cf. also [3], Theorem 2.4, for integrable h). Suppose that
(i) holds. By Theorem 4 we have h =u+v—voT, where ueL,, (u=0, and
veJyx, v=20. Let h, and H, (n > 0) be the sequences defined in Section 3,

but associated with u. Then v, = H, +v is an increasing sequence of non-
negative elements of Jy and

h—(v,—v,0T) =u—(Hy —H,oT) = hyy, —hgy,.

By the assumptions on T and on u, and by the results of Rost (see [8],
Theorem 4),

lim| (hyy, = and lim| {hy,, =0,

which yields (ii).
(i) = (i). By (ii), there.exists an N, such that zy = h—(vy—vyoT) is
integrable for N > N,. Now,

Dn(h9 g) = Dn(zNa g)+(vN/ zogoT")—(vNoT” l/ ZogOTk)'
k= k=

By the Hopf ergodic theorem and by the Proposition,
limD,(h, g) = [zv/[g on X for N> N,.

This yields (i), since |jz~| < flzwl =0 as N — co by hypothesis.
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