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1. Introduction. Let £4(f) be a stochastic process with continuous
time parameter, defined on a probability space (2,%, P), and with pro-
bability distributions entirely defined by a given parameter de¢®. The
time v up to which the process is realized is a Markov stopping time.
Knowing values = and £,(r) we wish to estimate the value of a function
g(?) of the parameter ©#. Thus the problem is to find Markov stopping
times 7 and estimators f(z, £;(7)) having some optimal properties. A se-
quential plan will be defined by a Markov stopping time 7 and the unbiased
estimator f of the function g(9). We assume the quadratic loss function
and the notion of optimality of the plan will refer to the lower variance
bound for the estimator f. This lower bound will be determined by the
inequality which is the analogue of the Cramér-Rao inequality in a classical
case. It is worthwhile to remark that the problem of the optimal unbiased
sequential estimation even in the classical Bernoulli scheme for various
types of loss functions is not fully solved at present.

In the continuation of this paper we shall consider the problem of
optimality of sequential plans for the exponential class of processes (De-
finition 4) and for this class we shall generalize the results obtained by
Trybula in [4], concerning efficiently estimable functions.

2. Sudakov lemma (). Let
{8} = {&s(t) = 2(t, @), we (2, py), e O, te T}

be a family of stochastically continuous processes whose probability
distributions are entirely defined by a given parameter 4. We denote by
X (X< R") the space of values of the processes of {£,} and we mean by T
the half-line (0, oo). Moreover, let #,, te T, denote the s-algebra generated

(1) See [2], p. 55-59, and [3].
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by the functions z(s, w), s < . We suppose that, for any ¢ < oo, all measures
up are absolutely continuous with respect to a certain measure u, on the
o-algebra #,. '

The function 7(w) measurable on £ with values in TU{oo} is said
to be a Markov stopping time if {w: 7(w) < t}eF, for every teT.

If the process &;(f) = x(f, w) is measurable, then the function
#(7(w), w) is measurable on 2. After Sudakov, the functions 7(w) and
# (r(w), »), both measurable on £, generate, for every ¥, the measure m on
the product space T x X according to the mapping w — (r(w), a:(-c(w), w))
= Z(w) in the following manner: for a Borel set C < T x X, we put
m(C) = u(Z71(0)).

If the measure u, corresponding to the process &,(f) is absolutely
continuous with respect to a certain measure corresponding to a particular
value ¢ = ¥,, then the measure m, has the same property. Further, under
certain additional assumptions which are essential in the sequential
estimation theory, the Sudakov lemma permits to determine the Radon-
Nikodym derivative dmg/dm, .

Let p,,(t, #; ) be the distribution density of values of the process
&5 (t) relative to the distribution of values of the process &, (t) at the time ¢.

SUDAKOV LEMMA. Let the functions x(t, o) of the variable t be right-
continuous for almost every we Q (with respect to u, ). Suppose that the function
Do, (b, 25 9) is continuous with respect to both arguments t and x on T'X X.
If the family {&;} 1is such that the end time t determines a sufficient
statistic (%), then the measures my are absolutely continuous with respect to
the measure my, and dmy/dmy = p, (t, x; 9).

In some particular cases the densities (Jlm,,/olm,90 were obtained first
by Trybula in [4].

If the paths of the process &,(t) are right-continuous and the set

C < T'x X is closed, then, following Sudakov [3], the Markov stopping
time

T(w) = sup{t’: (¢, z(t, )¢ C,0 <t <t}

is the time of the first attainment of the set C. If v(w) is the time of the
first attainment of some closed set ¢ = T x X, then the support of the
measure m is contained in this set.

The Sudakov lemma, published in 1969 [3], goes a long way towards
the further research in the sequential estimation theory for stochastic
processes (see [2], Chapter 12, and [5], where the Sudakov lemma is used).

(?) For the definition, see [2], p. 56, or [3]. If we denote by x;(w) the state of
the process £5(f) at a time ¢, then instead of “the end time ¢ determines a sufficient

statistic” we also say “the random variable a; () is a sufficient statistic for the parame-
ter 9.
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Taking into account the Sudakov result of the Radon-Nikodym
derivative dm, /dml, determination, one can give (by a similar method
as in the classical case) the lower variance bound for the parameter estima-
tor in a class of processes for which the Sudakov lemma is valid.

3. Lower variance bound for the parameter estimator. Let U
=T x X, and let # be the o-algebra of Borel subsets of U. By t = #(u)
and ¢ = x(u) are meant the components of the point ue U.

In the sequel we assume that values of the parameter 4 belong to
some closed interval (a, b). Let g(?J) be a function of the variable 4. The
real function f defined on U and #-measurable is called an estimator of
the parameter Q = g(9).

Definition 1. By a sequential plan we mean any triplet (v, g, f),
consisting of a Markov stopping time 7, the function ¢g(#) and its estimator
f, if the condition P({w: 0 < 7(w) < oo}) =1 is valid for all de(a,b)
and f is an unbiased estimator of the function g¢(¥), i.e.

(1) Es(f) = [flw)ps,(t, 35 #)m, (du) = g(9) for every de<a,b).
U

Moreover, we consider only such estimators for which E,(f?) exists
and is finite, i.e.

(2) ff2 ) Doy (1, 5 F)ma (du) < oo

in the underlying interval of values of 9.

Further, suppose that the functions g¢(¢#) and p,,o(t, x; 9) satisfy
certain regularity conditions. Namely, let g(¢}) be differentiable in the
interval (a, b> and such that its derivative g’(#) is not equal to zero for
any de {a, b>. Moreover, assume that, for any fixed &, there exist a function
G(t,z) and an ¢ > 0 such that

Do, (L, x5 §') — g (T, 25 F)
(& = 3)po (1, 75 9)

(3) < G(t,x), |¥—-9<e,

Where
@ [ 6 (t, 2)po,(t, 5 B)mo,(du) < oo
U
Let, for a given sequential plan (z,g,f) and 9, Di(f) denote the

Variance of the estimator f.
The following theorem holds:

S — Zactmraee mmasacn aaa
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THEOREM. Under the above-given assumptlions, for each sequential
plan (z,g,f), we have
’ 2
(5) D4(/) > (3] ;
T{[alnpoo(ta w; 9)[00]* Dy (2, ; B)ms, (du)

the equality holds at a particular value of the parameter & if and only if

0l t,x; 9
© f()—g(8) = h(g) Ree 0 %2

almost everywhere with respect to (a.e.w.r.t.) the measure m, , where h(9) # 0.
Proof. Since the estimator f of the function g(#) is unbiased, we can
write
ff( :ooo(t z; ') —Pay (8, @; 9) g(d)—g(®)

t,o; 9 du) = ————.
5 — ) oyt @5 B) Po,(t, @5 F)my (du) 9 o

Condition (3) implies that

Doyt ; V') — oy (L, 2; ?)
(3" — ) s, (2, @5 9)

< |f(u)@(t, x

where E,;(|fG|) < oo for E,(f*) < oo and E,(@?) < oo, according to as-
sumptions (2) and (4). Then from the Lebesgue bounded convergence
theorem, after evaluating the limits of both sides of (7) as ¥’ tends to &

we have

dlnp (t z; )
(8) f flu) —— Doy (1, @5 B)my (du) = g'(9).

In an analogous way, taking into account assumptions (3), (4) and
the condition

fp,,o(t,a:; P)m, (du) =1 for each He<a,b),
LV'

we obtain
olnp, (1, z; 9)
(9) f— "60 Do (t, @5 B)my (du) = 0.
U

Therefore,

alnp o () 25 )
(10) f flu) - 6.819 " pay (b, @5 D)y (du)

6lnp (t x; 19)
= [ —g@)]-—— = — pay(t, 5 B)mo(du).
U
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From equalities (8), (10) and the Schwartz inequality it follows that
(11) [P

alnp,,o(t x; 19)
f [F () — g(O)F By (1 25 B) g, (d0) f |— ]pa(,(t,w;ﬂ)m%(du).

Hence and in view of condition (1) we have

dlnp, (¢, z; 9)
[9' (91 < D3(f) f [»-"‘ ]Pao(t @; B)m,, (du)
U

which yields inequality (5).

Inequality (5) becomes the equality at a particular value of ¢ if and
only if the equality in the Schwartz inequality holds, i.e. if there exist
constants ¢, and ¢, (which can both depend on ) not both zero and
such that

o 0lnpy (t, x5 )
A2) e () [f(u)—g(?)] = ¢ca(9) 79 — a.e.w.r.t. m,.

Since the density p, (¢, z; @) should be strictly positive, it follows
that the equality holds a.e.w.r.t. msq,. Moreover, the derivative ¢’'(¢) has
no zeros on the interval {a, b>, and, consequently, inequality (11) implies
that neither f(u)—g(¥#) nor Olnp, (¢, x; 9)/09 can be equal to zero
a.e.W.r.t. m, . Then, neither ¢,(?) nor ¢,(%#) can be equal to zero. Therefore,
equality (12) holds if and only if equality (6) holds a.e.w.r.t. m, , where
h(#) 5 0. Thus the proof of the theorem is complete.

Definition 2. A sequential plan (z, g, f) is said to be efficient for
a given value 4 if inequality (5) becomes the equality at 9. The estimator
f is then called efficient at this value &, and the function g is efficiently
estimable at the point 9.

It follows from the Theorem that an estimator f is efficient at a given
value 9 if and only if it is of the form
dlnp, (&, xz; 9)
(13) fluw) = k(9) 0080, : +9(9)  a.ew.r.t. my.
Definition 3. A sequential plan (v, g, f) is said to be efficient if it
is efficient for each de <a,b). The estimator f is then called efficient,
and the function ¢ is efficiently estimable.

4. Optimal sequential estimation for the exponential class of processes.
We take into consideration some class of processes for which the Sudakov
lemma is valid. We suppose that, for this class, the requirements of the
Theorem hold. We denote by x,(w) the state of the process &,(f) at a time ¢,
and the random variable z(z(w), o) will be denoted, more simply, by z.(w).
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A. We introduce the following

Definition 4. By the exponential class of processes we mean the
class of homogeneous processes with independent increments satisfying
P({w: #,(w) =0}) =1 and defined by the exponential family of proba-
bility distribution densities (with respect to the Lebesgue or the counting
measure)

(14) p(t, x5 #) =7(t, z)expw, ()t +w,(F)x]

for t >0,ze X < R, #¢<{a, b),
where the function r(¢, x) is strictly positive.

The right-continuity of paths is assumed and, for this class of processes,
the random variable z,(w) is a sufficient statistic for the parameter 4.
In the sequential estimation theory, the exponential class of processes
was also treated by Franz and Winkler in [1].

Let us assume that the functions w,(¢#) and w,(J) are differentiable
in the interval {a, b> and their derivatives w,(#) and w,(®) do not vanish
for any #e (a, b).

Let us remark that the Poisson, negative-binomial, gamma and
Wiener (with linear drift) processes belong to the underlying class.

By (14) we have

(15) Pao(tv z; 9) = explw, ()t + wy(d)w]exp [ —w,(Po)t —wy(Fy)x].

It follows from the Sudakov lemma that there exists a countably
additive measure g, on % independent of # and such that, for each d¢ {a, b),

(16) P({o: (1(w), z(w))c C})
= [ exp[w,(9)t +wy(9)@]exp [ — w0, (Bo)t —wy () @] ms, (du)
C

S [exp[w,(9)t+wy(9)w]o.(du) for Ce .
C

From (15) we obtain
alllp,,o(t, z; 9)
09
Thus inequality (5) takes the form

(17)

= w, (9)t + wy (P x.

2 o' (D)]°
Dol > 5 oye twol @)

Taking into account (13) and (17) we state that an estimator f of
the function g(9) is efficient at a given value 9 if and only if it is of the form

(18) F(w) = h(9)[w;(9)t(u) +wy(Nx(u)]+g(d) a.ewrt. o,.
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B. Suppose that the plan (v, g, f) is efficient. Then we can choose
the values 4, and 9, (¥, # J,;) belonging to the interval {a,b)> and we
can write equation (18) for them. Thus we have

f(w) = h(dy)[wy(91)t(u) +wy (3))2(w)]+9(9)) aewrt. o
and
f(w) = h(By) [w, (D)t (u) +wy (F5) @ ()] +g(F,) a.e.w.r.t. p,.
Following the paper [4] we can subtract one equality from the other.
We then obtain
[B(9;)w; (9;) — h(Ds)w, (D2) 1E(w) + [B (1) Wy (9y) — h(Fg)w, (8,5) ]2 (u) +
+g(d)—g(P#) =0 a.ewrt. g,.

Thus we come to the following statement: if the plan (v, g, f) is efficient,
then a,t(u)+ asz(u)+ay = 0 a.ew.r.t. o,, where a; #* 0.

It follows from this result that selecting efficient plans one
should consider such plans for which the measure p, is accumulated on
some line.

C. The results concerning efficiently estimable functions, obtained
by Trybula in [4], we can generalize on the class of processes to be con-
sidered.

In view of (15), (16) and (17), formula (9) takes in this case the form

[ [w} (8)t +w} (8) 2] exp [y (8) ¢+ w, () x] 0, (du) = O
U

which yields the following form of the Wald first identity:

w; (8)

w, (9)

Let (t,g,f) be an efficient plan for ¢ = 9°. Thus, by the formula
(Z) = h(9°) [w, (8°) 7 +w, (8°) 2. ] +9(8),

(19) Ey(z,) = — Ey(7).

almost surely, we have
Es(f) = h(9°)[wy(8°) By (7) +w, (8°) By (2.)]+ 9 ().

Hence, taking into account (19), we get

h 0 ’ ’ 0
(200 E,(f) — ;f% [0 (8°) 10, (8) — ] (8) 0, (8%) 1 B (1) + g (8°).



234 R. Magiera

On the other hand, we have E,(f) = g(J) for every ¢¢ (a, b)>. Thus,
comparing this formula with (20), it is seen that the function g () is efficiently
estimable at & = 9° if and only if it is of the form

h(9° , , , /
@D 9(0) = o (0](8°)5(8) — ] (9) ()] Ba(e) + 9(87).

Suppose now that, for a given 7(w), the function g(#) is efficiently
estimable (by two perhaps distinct estimators) at points ¢, and 4,, ¢, # ¥,.
Then, by condition (21), the following relations must hold:

hl 01 ’ 7 ’ ’

g(8) =~ 19yl (8) — 0] (8)0, (821 Bo(r) + 9(8y),
w, (3)
h(192) ' ’ ’ ’

g(?) = ———- [w,(F5) wy (F) —w, () w,y(F2) | Ep(T) +g(DF).
W, (9P)

If we eliminate E,(r) from these equations, we obtain

{[(F1) wy(Dy) — (33) Wa(Dg) 1wy (D) + [h(Dg) wi(B5) — b (Dy) w,(D,) 1w, (9)}g(F)
= [B(8) g(F2)w, (9,) — h (D) g (91) wy (8,) 1w () +
+ [h(02)y(01)w; () — h(ﬁl)g(ﬁz)w;(ﬁl)]w;(ﬁ) .

It follows from the consideration carried out in Section B that the
constants h(®,)w; (%) — k(%) w, (9,) and h(d;)w,(d,) — h(d;)w,(?,) cannot
vanish simultaneously. Therefore, by the assumed properties of the
functions w,(¥#) and w,(#), the function standing by ¢(#) in the above-
given equation cannot vanish. Thus, if the function g(&) is efficiently esti-
mable at two distinct values of &, then it is of the form

-k wy (9) + kqw, (9)
22 _ L
(22) 9(9) kswi(9) + kyw, (9)

This result implies, in particular, that if a plan (z, g, f) is efficient,
then the function g(9) must be of form (22).
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O NIEROWNOSCI TYPU RAO-CRAMERA
W TEORII ESTYMACJI SEKWENCYJNE]

STRESZCZENIE

W pracy podano ograniczenie od dolu na wariancje estymatora parametru
Q = g(9) w estymacji sekwencyjnej dla klasy proceséw stochastycznych, dla ktoérej
obowiazuje twierdzenie Sudakowa [3] (g(#) oznacza pewna funkecje parametru ¢
rozkladéw prawdopodobienistwa rozwazanej klasy procesé6w). To ograniczenie od
dolu jest typu Rao-Craméra i moze stuzyé jako kryterium przy wyborze optymalnych
planéw sekwencyjnych. Uwzgledniajac ten fakt, uogélniono wyniki dotyczace funkeji
efektywnie estymowalnych [4] na przypadek wykladniczej klasy proceséw (definicja 4).



