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QUEUEING SYSTEM WITH MERGING OF TWO INPUT STREAMS

1. Introduction. While analyzing various queueing systems one
assumes very often that the input stream is Poissonian or, more gen-
erally, that it is a renewal stream. There are, however, cases where this
assumption is not satisfied. For instance, it can happen that, besides
of the renewal input stream, additional customers arrive to the system
in a random, unexpected manner. This may be so, e.g., in a service station
model in which machines arrive periodically for regular service and where
also additional machines arrive for repair because of their breakdown.
A similar input stream was considered in [1] while analyzing the arrivals
of customers for the hospital admission.

2. Remarks on the system (E;, M)/M/n without waiting. Young
considered in [5] a system with superposition of two input streams. It
was the system (K, M)/M/n without waiting, i.e. a system in which
it was assumed that the input was a superposition of an L-th Erlangian
and an independent Poisson streams, the service time was exponential,
and there were n parallel service channels.

Knowing that the interarrival time of customers in the Erlangian
Stream can be divided in L consecutive phases with exponential duration,
the state of the system can be analyzed by the process Z(t) = [W (), n(t)],
where W (t) is the phase number of the Erlang stream and « (¢) is the num-
ber of occupied service channels.

Young found, for the steady-state probabilities P,, of the process
Z(t), a homogencous system of linear equations which was solved with
the additional condition

(1) Puy=Pyp w=1,2,...,L—-1;k=0,1,...,n).

In this way one obtains the solutions

L n .
, 2 RF /ZRJ

(2) ‘Pk: PukZF/ TH (k=0,1,...,’n)7
w=1 : j=0 J:
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where R = (2;+4,)/u and 4,, 4, are the intensities of the Erlang and
Poisson streams, respectively, and g is the service intensity.
However, condition (1) implies only zero solutions (see [4]), it is

n

thus in contradiction with the normalizing condition ) P, = 1.
k=0

As an example consider the system (E,, M)/M/1. The steady-state
probabilities of the system satisfy the following system of equations:
— (22, 4+ A3) Py + 24, Pyg+ Py, =0,
— (24, +25) Pyo+puPy = 0,
AsPro— (24, + p) Py +24, Py, =0,
22, P+ 2Py + 22, Py — (24, + p) Py, = 0.

n

The solution of this system under the condition Y P, =1 is equalto
k=0

p(42 + 25+ 1) _ I
220+ 2+ u)2’ T 2@+ At )]

_ (@Rt Ap 20+
220+ 2 +m2 T 2@+ Atp)

Whence we get

Plo=

Py,

P0:P10+on= ST T

(22414 245)% + u(Ay+ As)

P, =P, +P, =
oo (22, + Ay + p)?

Thus, the obtained solutions P, and P, are not of form (2).

3. Analysis of the system (GI, M)/M/n by an extended Markov
process. Let us replace the Erlang stream in Young’s system by a renewal
stream with arbitrary interarrival distribution G (). In this way we obtain
the queueing system (GI, M)/ M |n.

Introduce the following notation:

A4 — Input intensity in the Poisson stream; o0
a — mean number of arrivals in the GI-stream, i.e. 1/a = f zd@(z);
p — service intensity; 0

n(f) — number of occupied channels at the moment ¢, i.e. the state
of the system at the moment ¢;

X(t) — time interval from the moment ¢t to the arrival of the next
customer in the GI-stream.
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Also, let

P.(t,z) =Pr{ni) =k, X(t) <2} (k=0,1,...,n)
and
P.(x) =1lim Py (t,z) (k=0,1,...,n).
t—o00

Assume that the considered system is steady-state, i.e. that, inde-
pendently of the initial conditions, a limit state distribution of the states
settles down as sufficient time has elapsed:

lim Pr{n(t) =k} =p, (k=0,1,...,n).
t—c0

Of course, p;, = P;(o0).

The steady-state probabilities p, are found in the following way:
first, the dependence between the probabilities p, and the probabilities
of the states of the imbedded chain constructed on the arrival moments
of the @I-stream is found, and then these probabilities are expressed
explicitly. In the proofs of Theorems 1 and 2 of this paper, the method
from [2] is used.

Now, let us define the two-dimensional process Y (f) whose the first
component is discrete, and the second one is continuous and linear inter-
val-wise. Thus consider the process Y () = [n(t), X (t)], where n(t) is the
number of customers in the system at the moment ¢ and X (¢) is the time
from the moment ¢ to the moment of arrival of the next customer in the
GI-stream. This process is a Markov one.

THEOREM 1. The steady-state probabilities P, (x) satisfy the following
system of differential equations:
Py(x) — APy (2) — Py (0) + pPy () = 0,
Pl () — (A+ kp) P(®) — P(0) + Pp._1(0)G(2) + AP,_, (w) +
+(k+DpPypy(@) =0 (k=1,2,...,n—1),
P, () —nuP,(z) — P,(0) + P, (0)G () +- AP, _, () + P, (0)G (x) = 0.

(4)

Proof. Let & > 0. Consider the event {n(t+h) =k, X(t-+h) < x}
fork =1,2,...,n—1and k> 0. This event occurs as onc of the following
mutually exclusive events:

1° In the moment ¢, the system is in the state k and no arrival occurs
and no service is finished up to the moment ¢+ h; the probability of this
event equals

Prin(t) =k, h < X (1) < @+ h} (L — k) (1 —kuh)
= [P(z+h) —Py(h)] (1L — Ah — kuh) +o(h).
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2° In the moment ¢, the system is in the state ¥ —1, and in the time
interval from ¢ to ¢+ % only one arrival in the GI-stream occurs, the time
elapsing to the next arrival in the GI-stream does not exceced 6h+x
(0 < 6 < 1), and no scrvice is ended; the probability of this event equals
Pr{n(t) =k—1, X(t) < h}G(0h+x) (1 —Ah) (1 —(k — 1) uh)
= P,_,(h)G(6h+2x)+o0(h).
3° In the moment i, the system is in the state k—1, and in the time

interval from ¢ to ¢+ & only onc arrival in the Poisson stream occurs and
no service is ended; the probability of this event cquals

Pr{n(t) =k—1,h< X(¢) < +h}Ah(1—(k—1)uh)
= [Pr_1(@+h)—Py_,(h)]Ah+o(h).
4° In the moment ¢, the system is in the state k¥ +1, and in the time

interval from ¢t to {4k one service is finished and no arrival occurs; the
probability of this event equals

Pr{n(t) =k+1,h< X(@t)<ax+h} (k+1)uh(1l—Ah)
= [Pry1(@+h) — Py (R)] (k+1) ph+o(h).
5° All events different from 1°-4°; the probability of their occurrence

is of order o(h).
Since these events arc exclusive, the following equality holds:

P.(z) = [Py (@+ 1) —Py(k)] (L — Ak — kuh) +P,_, (k)G (6h + ) +
+ [Pr1(@+h) = Pp_y(R)] AR+ [Py (@ 4-h) = Ppey 1 (B)] (B +1) ph+-0(h).
Hence, division by k and taking the limit for A—0 leads to
Piy(w) = Pi(0) — (A-+kp) Py (@) + (% + 1) pPy 1 (#) + G (@) P2 (0) +
+ AP, _,(z) = 0.
For k = 0, the event {n(t+h) =0, X(t+h)<x} can occur only

as a realization of events 1° and 4° (with k£ = 0); thus, as previously,
we have

Py () — APy (@) — Py(0) 4 pPy (z) = 0.
For k = n, we have
Pr{n(t+h) =n, X(t+h) <z} =Pr{n(t) =n, h< X(t) < z+h}(1—nuh)+
+Pri{n(t)=n, X(¢) < h}G(6h+z)+Pr{n(t)=n—1, X(t) < h}G(0h+x)+
+Pri{n(t) =n—1,h< X@)<x+h}Ah+o(h).
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Hence, as before, we obtain
P;t(m)_n;upn(‘m)_P;L(0)+P;z—1(0)G( )+)’Pn 1( )+P ( )G( ) = 07
which completes the proof of Theorem 1.

4. Analysis of the imbedded Markov chain. Let {S,} be the arrival
moments in the GI-stream. Consider now the sequence of random variables
{nr} given by the formula n, = n(8, —0). This sequence forms a Markov
chain, since n, , = n,+1+7,, where 7, is an integer-valued random
variable connected with the number of arrivals in the Poisson stream
in the interval (8,, S,,,) and with the number of finished services in the
same interval. The random variable depends only upon the length of the
interval (8,, 8,,,) and upon n,, which proves that the chain {n,} is Mar-
kovian. The probabilities of the states of the chain are denoted by

]);:(7') =Pr{nr :k}, PZ =limp,t(r) (k :0717-“7”’)'

r—00

The existence of the limits lim py(r) follows from the irreducibility

r—>o0

and non-periodicity of the chain {n,}, and also from the fact that the

number of its states is finite.
The following theorem states the relation between probabilities p,

and pj:
THEOREM 2. The limit probabilities p, arc related with the limit proba-
bilities py, of the imbedded chain as

k-1
a (V(k—i-—-1)! . q"
pk=; (——k,——qp;”ﬁ po (E=1,2,...,m),
(5) = n—1n-k-—1 n A
q
(1—~Y2 k—l— +1 )/ZW (b =1,2,...,n),
k=0

where ¢ = Au and 1]ja = f zdG (v
0

Proof. Consider the system of equations (4). From the assumption
of the existence of lim P,(z) = p, we have lim P,(z) =0, and also

T—>00 T—>00
lim G(x) = 1. Using these relations, we obtain, after taking the limit
r—oo

for z— oo, the system of equations

— Apo+up, — Py (0) =
(6) — (A Tp) py+ A+ (K +1) ppy 1 — Pr(0) + Pp_, (0) =
(k=1,2,.. ,n—l),

—niu’pn_}_}‘pn 1+Pn 1(0)
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Now we find the distribution of X (¢). Evidently,
Pr{X(t)< a} = P(z) = ZPk(w).
k=o

Sidewise summation of all equations in (4) yields

Hence
P'(2) = P'(0) (1—G(x)).

Integrating both sides of this equation from 0 to xz, we obtain
P(zx) = P’(O)f(l—G(u))du.
0
Since P(o0) =1, we have P’'(0) = a, and hence

P(z) = af(l — G (u))du.

Thus
' . P .1
P,(0) = lim (@) = lim —Pr{n(t) =k, X () < a}
z—0 & >0 L
Pr{X(t ,
=limPr{n(t) = k| X () < 2} ! (a:)<m} = piP'(0) = apy.
x—0

Adding now to every equation of (6) all preceding ones, we obtain
the recurrence relation
*
apy

A
= —_— EF=0,1,...,n—1
Pry1 w(k+1) Pr+ w(k+1) ( y Ly sy N )

from which the first formula of (5) follows. From the normalizing condition

D) p; =1 we have the formula for p,. This completes the proof of
i=1
Theorem 2.

Let p; =Pr{n,,, =j|n, =i} = Pr{n(8,,,—0) =j[n(8,—0) =i} be
the transition probabilities in the chain {n,}. We find now their analytical
form. Notice that in the interval (8,, S,.,) a state change occurs only
at the arrival moments of the Poisson stream and at the moments of
finishing the exponential services. Hence, the process n(t) behaves in the
interval (8,, S,.,), similarly as in the system M /M /n without waiting.
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Let m(t) be the number of customers in the system M /M /n without
waiting at the moment ¢. From the previously said it follows that the
distribution of n,,, under the conditions n(8,—0) =4 and 8§, ,—8,=1
is identical with the distribution of m(S,+1) under the condition

i+1 ifi<n—1,

) if 1 =n.

Since {8,,,;—48,} have the distribution G(?), it follows that

=]

Py = [ Pip(0AG(E) (i =0,1,...,n—1),

0

Dyrj =anj(t)dG(t)7
0
where P,;(t) are the transition probabilities in the system M /M /n without
waiting. To determine the probabilities p; in full, one has to know the
analytic form of the probabilities P;(?) in the system M /M /n. They are
equal to (see [3])

j/j' 0l X - D;(7y Q) D (1, q)
Pi t) = n —_+ " — 7
j( ) 2 k/k' q .7' k___Zlv rk'Dn(rk7 Q)Dn(rk+17 Q)

exp [, ut],

where ¢ = A/u and

k
k(85 4) =2(f) ¢ ts(s+1)...(s+i—1),

=0

and r, are the roots of the polynomial D, (s-+1, g).
Coming back to the transition probabilities (7) in the chain {n,},

one obtains

P = [ Pirs(06(0)
0

j/j' z i-1 ’n' 2 z+1 Tl? (7k7 q) q*(_rk'u)

(j=0,1,...,m;4=0,1,...,n—1),

P = [ Py®dG(t) = Poory (5 =0,1,...,m),
0
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where g¢*(s) is the Laplace-Stieltjes transform of G (¢),

g*(s) = [ e~"dG(1).

The steady-state distribution {py} for the chain {n,} is found from
the finite linear equation system

P;=Z??Pik (k=0,1,...,n),
(8) . 1=0

k=0
However, the matrix of this system is so complicated that an explicit
form of the solution cannot be found.

5. Example. Consider the system (GI, M)/ M /1. From (8) and (5) it
follows

— — . — — +
Po = P1o 1+g¢ 1+q ' P1 = Pn 1+g 1tq
9
Y po o= gGtp) g e(l-gOm)
T 144 1+¢q ’ Y 14¢ 1+¢ :

Formulae (9) are a generalization of formulae (3).

6. Acknowledgement. I wish to express my sincere thanks to Dr. B.
Kopocinski under whose guidance this work was carried out.

References

[11 P. Kolesar, A Markovian model for hospital admission scheduling, Manag. Sci.
16 (1970), p. B384-B396.

[2] 1. Kopociniska and B. Kopocinski, Queueing processes with feedback, Bull.
Acad. Sci. Pol., Sér. 8ci. Math. Astronom. Phys., 19 (1971), p. 397-401.

[3] J. Riordan, Stochastic service systems, Wiley, New York 1962.

[4] T. Ryba, Remarks on a service system with mized input streams, Operat. Res.
20 (1972), p. 452-454.

[6] J. P. Young, Administrative control of multiple-channel queuing systems with
parallel input streams, ibidem 14 (1966), p. 145-156.

MATHEMATICAL INSTITUTE
UNIVERSITY OF WROCLAW

Received on 21. 6. 1972



Queueing system with merging of imput 427

TERESA RYBA (Wroclaw)

SYSTEM OBSLUGI MASOWE]
Z SUPERPOZYCJA DWOCH STRUMIENI ZGLOSZEN

STRESZCZENIE

Przedmiotem pracy jest analiza systemu (GI, M)/M/n bez oczekiwania, tzn.
systemu, o ktérym zakladamy, Ze strumien zgloszen jest superpozycja dwoéch stru-
mieni — poissonowskiego M i odnowy GI; czas obslugi ma rozklad wykladniczy,
n rownoleglych kanaléw obslugi.

Analiza tego systemu oparta jest na wlozonym lancuchu Markowa, okre§lonym
na momentach zgloszen jednostek ze strumienia GI, oraz na rozbudowanym procesic
Markowa Y (t) = [X (f), n(t)], gdzic n(t) jest liczba jednostek w systemie w chwili ¢,
a X (t) — czasem od chwili ¢t do chwili zgloszenia jednostki ze strumicnia GI.

W pracy rozpatrujemy prawdopodobiciistwa stanéw procesu n(t) w warunkach
stacjonarnych. Najpierw znajdujemy zwiazki rozpatrywanych prawdopodobiciistw
w czasie ciaglym z prawdopodobienstwami wlozonego laficucha. Te ostatnie prawdo-
podobieristwa okreslone sa przez liniowy uklad rownan o znanej, ale skomplikowanej
analitycznie macierzy.



