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1. Introduction. Let m denote Lebesgue measure on the Borel o-algebra
of the unit interval [0, 1]. A function 7: [0, 1] — [0, 1] which is Borel-
measurable and nonsingular (i.e. m(4) = 0=mt~'(A4) =0) is called a trans-
formation. We identify transformations which differ only on a set of measure
zero. A transformation t is called invertible if T~ exists and is also
a transformation. t is called measure-preserving if mt='(A) = m(A) for all
Borel sets A. The group of all invertible transformations is denoted by 4. By
%, we denote the group of all invertible measure-preserving transformations.

Every invertible transformation t induces a positive invertible isometry
T® of I?(m), 1 < p < oo, defined by

T® () (1) = o!?@) f(t~1 (1)),

where fel?(m), w, =dmt™'/dm. If 1€ %,, then w, = 1.

By a classical result (see, e.g., [2], footnote 3), for every p (1 < p < )
we can identify 4 with the group %'” of all positive invertible isometries of
I?(m) (i.e. with the set of all Banach lattice automorphisms of I7(m)).
Therefore, we can define a topology in % as the strong operator topology
inherited from & (I?(m)). For all p (1 < p < o) these topologies coincide (see
[1], Theorem 8). Moreover, the I*-strong and IP-weak operator topologies in
%, coincide, since the strong and weak topologies in the unitary group in
& (L*(m)) are the same and all [P-weak operator topologies coincide on the
compact set of doubly stochastic operators. It is not hard to see that the
family of sets of the form

{te%: m(t(4)As(4)) <e for i=1,...,n and ||w,—w,ll; <&},

where ¢ >0, 0€¥9, and A,, ..., A, is a partition of the interval [0, 1] into
subintervals, is a neighborhood base for the strong operator topology in 4.

In this paper we prove that the groups %, and % are topologically
finitely generated (Theorems 1 and 2). We also prove that for 1 < p < oo the
automorphisms of the Banach lattice I’(m) span a dense subspace of
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& (L2 (m)) (Theorem 3). Iwanik [4] has shown that this is so for p =2 but
does not hold for p=1.

The function spaces I?(m) considered in this paper can be viewed as
either real or complex.

I would like to thank Anzelm Iwanik for his contribution to this paper.

2. Invertible measure-preserving transformations. We shall use the fol-
lowing property of permutations:

LEMMA 1. Let n be a natural number. Then the group of all permutations
of {1, ..., 2n} is generated by the following two elements:

(1,2, 2n
*=\23,..., 1)’
g = 1,2,...,n—=1,n,n+1, ..., 2n
“\2,3,..., n, l,n+1,...,2n)'

Proof. Since every permutation can be decomposed into transpositions,
it suffices to show that a and S generate every transposition. Moreover,
because of the nature of « and f it is enough to prove that some transpo-

sition, e.g.,
_ 1,2,..., n,n+1,...,2n
y—(l,Z,...,Zn,n+l,..., n)’

can be expressed as a composition of a and B. In fact, it is not hard to see
that y =a""! fu" B.
For a€[0, 1] we write a,(t) =t+a (mod 1). Moreover, we define

t+a (mod 1/2) for 0<t < 1/2,
t for 1/12<t<1.

B (1) = {

Obviously, a,, B, €%,,.

THEOREM 1. If a and b are irrational numbers, then the group generated by
o, and B, is dense in 4,.

Proof. It is easy to see that for every real number c the transformations
a, and B. belong to the closure ¢, in ¥, of the group generated by «,
and B,.

Now, given ne N, we partition [0, 1] into 2n subintervals of equal
length. It is sufficient to show that s#, contains every piecewise linear
transformation ¢ which permutes these subintervals. By Lemma 1 we can
express ¢ as a certain composition of transformations «, and B, for ¢ = 1/2n.

3. Invertible transformations. Let I 1,---» 1, and J,, ..., J, be partitions
of the interval [0, 1] into subintervals. The notation

o:1,-Jy, ..., 1,-J,
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means that ¢ is.the piecewise linear transformation that maps I; linearly
(with positive slope) onto J; for all i < n.
Now, for a€[0, 1] and b > 0 we define

@ap: [0, af(b+1)] - [0, ab/(b+ 1)].
(a/(b+1), a] - (ab/(b+1), a], (a, 1] —(a, 1].
Note that the first interval is stretched and the second one is shrunk by the

factor of b.
Let 2 denote the group generated by %, and ¥, where

Y = 1/3,2001200,4,300,,;: [0, 1/12) - [0, 1/6), [1/12, 1/4) - [1/6, 1/4),
[1/4, 1/2) - [1/4, 1/2), [1/2, 9/16) —[1/2, 11/16),
[9/16, 3/4) —»[11/16, 3/4), [3/4, 1] —[3/4, 1].

LeMMA 2. If a€[0, 1], then @, ;, @,3€X.

Proof. We may assume that a < 1/12 (since ¥, — ), several con-
jugates of ¢ can be composed together, if necessary). Let & € %,, be defined by

&: [0, 1/6) - [1/12+ 2a, 2a+1/4), [1/6, 2a+1/4) - [0, 2a+1/12),
[2a+1/4, 1/2) - [2a+1/4, 1/2), [1/2, 11/16) - [9/16, 3/4),
[11/16, 3/4) - [1/2, 9/16), [3/4, 1] —[3/4, 1].
The transformation ¢ = Y&y maps linear intervals
I, =(1/12—a, 1/12) and I, =(1/4, 1/4+2a)
onto (1/4, 2a+1/4) and (1/6, a+ 1/6), respectively. It is easy to check that for
all intervals I such that In(I,Ul,) = @ we have m(¢(I)) = m(I). This implies

the existence of two transformations &,, £,€%, such that ¢,, =¢, @¢&,.
Therefore, we obtain ¢, ,€ . By analogous arguments we have ¢, ;€.

Lemma 3. If Pa,bs (pa.ce';f Jor all ae[0, 1] and some b, c >0, then
Papc €X for all a0, 1].

Proof. Let 6 > 0 be such that §(b+1)(c+1) < 1/2. We put
N = @Pp+1,b 00172 O Pp(c+1),c Oy 2:
[0, 6] - [0, 6b], (3, 6(b+1)] — (b, 6(b+1)],
(6(b+1), 1/2] = (6(b+1), 1/2], (1/2, 6b+1/2] - (1/2, dbc +1/2],
(6b+1/2, b(c+1)+1/2] = (8bc+1/2, b(c+1)+1/2],
(Gb(c+1)+1/2, 1] = (Bb(c+1)+1/2, 1].
Then we have ne .
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Let now (€%, be defined by
&: [0, 6b) - [1/2, 6b+1/2),
[6b, 6(b+1)) > [0, 8), [6(b+1), 1/2) > [b(b+1), 1/2),
[1/2, 6bc+1/2) - [6b+1/2, 6b(c+1)+1/2),
[6bc+1/2, 6b(c+1)) =[5, 6(b+1)),
[6b(c+1)+1/2, 1] - [éb(c+1)+1/2,1].
The transformation ¢ = nofon maps the intervals
I, =(0,6] and I,=(db+1/2, db(c+1)+1/2]

onto (1/2, 6bc+1/2] and (b, 6 (b+1)], respectively, and for intervals I such
that In(I,ul,) = @ we have m(no&on(l)) = m(I). Hence ¢,, = oot for
some o, 1€%,, and we obtain ¢,,. €¥ .

CoROLLARY. The closure of H# contains all ¢,, for 0<a<1and b > 0.

Proof. The transformation ¢,;, belongs to 5 if and only if ¢,,,
belongs to 5, since %,, = . Therefore, using Lemmas 2 and 3 we infer that
@€ for b= 23" with k, me N. Since the set {2*/3™: k, me N} is dense
in R,, the proof is complete.

The following proposition is implicitly contained in [3], so we omit its
proof.

PROPOSITION. Let D be a dense subset of [0, 1]. Then the family of all
invertible transformations t of the form

1, -Jy, ..., 1,—J,,

where (I,) and (J,) are partitions of [0, 1] into subintervals with endpoints in
Du{0, 1}, is dense in %.

THEOREM 2. If a and b are irrational numbers, then the group generated by
Oy, By, and Y is dense in 4.

Proof. By Theorem 1 and the Proposition it is sufficient to show that
for any partitions 0=a,<a; < ... <ay,y; =1 and 0=by<b, < ...
...<b,,, =1 with a;, b; of the form 2*/3™ for 1 <i<n there exists a
transformation in 5 which maps [aq;, a;,,) linearly onto [b;, b;,,) for
i=1,...,n

By the Corollary we may assume that a, < 1/4 and b, < 1/4.

Now, &; = @, +b,).64/ay) Maps [0, a;) onto [0, by). The function

®: [Oa bl) —’[O’ bl)a [bli él (02))_’[b1’ bZ),
[51 (ay), &1 (az)+by—by) > [bz, ¢y (a)+by—by),
[¢1(a))+by—by, 1] - [E(a)+by— by, 1]
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clearly satisfies the equality ¢ = o9, ,7 for some o, 7€%, and x, yeR,, and
so @e#. Therefore, £, = p&,e# and it is easy to see that £, maps
[a;, a;+,) onto [b;, b;,,) for i =0, 1. Continuing this process by induction,
we can construct a transformatlon ¢, A such that £, maps [a,, a;,,) onto
[b;, b;+,) for i=0,1,

4. Linear operators on [”.

LEMMA 4. Let 1 < p < oo. For every measurable characteristic function x
the multiplication operator f— yf is in the strong operator closure of conv %
in &£ (L*(m)).

Proof. We may and do assume that y is the characteristic function of
the interval [0, a), 0 <a < 1. Let A4,, ..., Ay be the partition of [a, 1] into
subintervals of equal length. We define 7,€% to be the identity on [0, a) and
linear on each A, with Ay —[a, 1]\A4; and [a, 1]\Ay — 4;. Now we define
T, = T”. In other words,

L) =, f(t7 (1), where w;(t) =dmzt/dm(1).
Clearly,
1 for te[O0, a)
w; (1) = { 1(N—-1) for te[a, 1]\A4,;,
N-1 for teA;.
We put

Ry = Ieconv%

"MZ

1
N,
For |f| <1 we have Ry f(t) =f(¢) if t€[0, a) and

N

Ryf @< ¥ IT f1< % y_ o)

i=1

1
=((N=1'""*+(N=1)") = ~0 for te[a, 1)

as N — oo. Consequently, Ry converges to the required operator in the
strong operator topology.

THEOREM 3. Let 1 < p < 0. Then the linear span lin% of % is strong
operator dense in £ (LF(m)).

Proof. Let

S0 (1) = { S(Wi@) for te(k—1)2", k/27),

otherwise,

7 — Colloquium Mathematicum XLVIII.2



250 R. GRZASLEWICZ

where neNz 1 <k < 2" and the transformation
Vit ((k—1)/2", k/2") - ((i—1)/2", i/2")

is linear for i=1,2,...,2" By Lemma 4, S belongs to the strong
operator closure of lin%. Now we fix a finite measure u <m and two
numbers a, b (a < b) in [0, 1]. Write

s =% i u((G—1y27, i/2m)si»,

k i=1

where the first summation is over all k such that
((k—1)/2" k/2") < (a, b).

Obviously, S™ f(f) =0 for t¢[a, b]. If f is a step function (constant on
subintervals), then for te(a, b) we have S™ f(t)— [fdu. Therefore, by
Lemma 4 the one-dimensional operators f— x| fdu belong to the strong
operator closure of lin% and, consequently all finite-dimensional operators
are in the closure of lin %. But the set of all finite-dimensional operators is
strong operator dense in & (L (m)).

It should be noted that, by Theorems 2 and 3, for every p (1 < p < o)
there exist three positive invertible isometries which generate a strong
operator dense subalgebra of Z( L?(m)).

Added in proof. An extension of Theorem 1 is contained in [5].
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