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Investigating smooth fans [5], [9] and, more general, smooth den-
droids [6], we have observed that these curves are contractible (see [5],
Theorem 11, p. 30 and Corollary 19, p. 31, and [6], Corollary 12, p. 311).
Further, Mohler [10] has characterized smooth dendroids as those which
are contractible by a retracting homotopy in a way such that some point
remains fixed throughout the homotopy ([10], Theorem 1.14, p. 370,
and Theorem 1.16, p. 371). Answering a question raised by Mohler
in [10] we show that Mohler’s condition concerning the fixation of some
point throughout the homotopy is superfluous. Answering another ques-
tion asked by Mohler in the same paper we prove that each contractible
dendroid is uniformly arcwise connected, and we give an example of
.a fan which is not contractible but is uniformly arcwise connected. Finally
several questions concerning contractibility of dendroids are raised.

1. A metric space is said to be a continuum if it is compact and
connected. A continuum is said to be hereditarily unicoherent if the inter-
section of any two of its subcontinua is connected. A continuum is said
to be a dendroid if it is hereditarily unicoherent and arcwise connected.
A dendrite means a locally connected dendroid (i.e., a locally connected
continuum without any simple closed curve).

For the remainder of the paper we let I denote the unit interval
[0, 1] of real numbers. If h: X XxI — X is a homotopy on a topological
space X, we let h, for tel denote the map h;: X — X defined by h(x)
= h(«,t) for each xeX.

A space X is said to be contractible if there exists a homotopy h:
X XI - X such that h, is the identity on X and h, is a constant map
(i.e., h, maps X onto a point).

THEOREM 1. If a dendroid X is coniractible, then each subdendroid
of X s contractible.

Proof. Let X be a contractible dendroid and let a homotopy h:
X XI — X be such that h, is the identity and &, is a constant map. Further,
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let ¥ be a subdendroid of X. For each point yeY define a subset 4,
of I by

A, = {tel: h(y,t)eX}.

In particular, for { =0 we have h(y,0) =yeY, thus 0ed, for
each y in Y.

Since the mapping h is continuous and Y is a closed subset of X,
it is easy to verify that A, is closed. It implies that the set I\ A4, is open
in I, thus it has at most countably many components each of which is
an open interval. Denote them by C,, (» =1,2,...) and denote ends
of C,, by t,, and t,, with t, , <1, .. Putting

-Dy,n = {h(y7 t): t';/,n S ti’/,.n}

we see that D, , is a continuous image of the closed interval [¢, ,, %, 1,
thus a locally connected continuum which lies in the dendroid X. Hence
D, , is a dendrite. If C,, does not contain 1, i.e. if ¢, , # 1, then by the
definition of A, exactly two points of D,, lie in Y, namely h(y, ¢, ,)
and h(y,t,,). But the intersection D, ,NY is connected by virtue of the
hereditary unicoherence of X. It implies that if ¢,, # 1, then h(y, ¢, ,)
= h(y,%,,). Using this equality it is not too hard to verify that the
mapping H: Y XI — Y defined by

hy,t)  if ted,,

BUD =\ny, e it te0,, < In4,
is continuous.

We shall prove that H is a homotopy with H, — the identity and
H, — a constant map. In fact, for ¢t =0 we have H(y, 0) = h(y, 0)
since 0ed,, so that Hy(y) =y for each yeX, ie. Hy: ¥ > Y is the
identity.

For ¢ =1 put h,(X) = ¢ and consider two cases. Firstly, let ceY,
i.e.,, h(y,1)eY. Then 1¢A, for each yeY. Thus we have H(y, 1) = h(y,1)
by the definition of H, whence H(y,1) = cforeachyin Y,ie,H,: Y - Y
is a constant map. Secondly, let ce X\Y,i.e., h(y,1)eX\Y.Then 1eI\ A4,
for each y<Y. Thus, for any fixed y in Y there is a component O, , of
INA4, which contains 1. Let t,, <1 =t,, be the end point of C,,, i.e.,
Cpn = {tel: t,,<t<1}. Therefore H(y,1l) = h(y,t,,) by the defi-
nition of H. Further, if ce X\Y, the hereditary unicoherence of X implies
that there is one and only one arc g¢c in X such that Ynge = {q} (see
[4], T20, p. 195, and T27, p. 197). The set D, , = {h(y,?): ¢, , <t < L}
is a dendrite which contains h(y,1) = ¢. Since C,, is a component of
the set I\ A, hence its left end point ¢, , is the only point of the closed
interval [t, ,, 1] which belongs to 4,. Thus h(y,t,,) is the only point
of D, , which lies in Y. So D, , contains the arc from h(y, t,) to ¢ and
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we have Ynh(y,t, )¢ = {h(y,t,,)} which implies h(y,t,,) = g by the
uniqueness of the point ¢ defined above. Therefore we have shown that
H(y,1) =g¢q, l.e., that H,: Y - Y is a constant map.

2. A dendroid X is said to be smooth (cf. [6], p. 298) if there exists
a point peX, called an initial point of X, such that given any sequence
of points a, in X with lima, = a, it follows that the sequence of

n—oo
arcs a,p is convergent, and Limea,p = ap.

Recall that if a continuous mapping f of a topological space X onto
f(X) has the properties f(X) « X and f(x) = « for each x¢f(X), then f
is said to be a retraction ([1], p. 154). A homotopy h: X XI — X on a topo-
logical space X is said to be a retracting homotopy ([5], p. 31 and [10],
p. 370) if, for every teI, the map h: X — X is a retraction.

Mohler has proved ([10], Theorem 1.14, p. 370) the following

THEOREM A. If a dendroid X admits a homotopy h: X XI — X satis-
fying

(1) b is a retracting homotopy,

(i1) h contracts X to a point peX,

(iii) h(p,t) = p for every tel,
then X ts smooth.

Further, he has asked ([10], p. 372) whether condition (iii) is necessary
in establishing the above theorem; that is, suppose that X is a dendroid
which admits a homotopy h: X XI — X satisfying conditions (i) and
(ii) of Theorem A, does it still follow that X is smooth? We shall prove
now that condition (iii) is not necessary, i.e. that conditions (i) and (ii)
are sufficient for a dendroid X to be smooth.

A point x of a topological space X will be called a fived point of
a homotopy h: X XI — X provided k,(x) = x for each tel.

Let Y be a subcontinuum of a continuum X, and let peY. Denote
by T,(Y) the set of all points ye¢Y such that if K is a subcontinuum
of Y containing y in its interior with respect to Y, then peK (see [6],
p. 304). For the remainder of this section let X be a dendroid, d be
a metric on X, @ (x, r) *— open metric ball in X with centre # and radius
ryie.,Q(x,r) = {yeX: d(r,y) <r},andlet h: X XI — X be a retracting
homotopy on X. We shall prove the following

LEMMA 1. Suppose x is a fived point of h and pehy(X) such that
xeTy(ho(X)). Then

(a) p v a fized point of h,

(b) zeT,((hy(X)). .

Proof. Agsume p # z, for otherwise the lemma is trivial.

(a) Let ¢ = }d(x, p). The homotopy h being continuous and # being
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a fixed point of A, there is, for each tel, a pair of open sets U, =« X and
V, = I such that x<U,;,teV, and A(U, X V,) = @(x, ¢). By the compact-
ness of I there exist ?,,1%,, ..., %, in I such that the sets V,, Vy,..., th

. n
cover I. Let U = (N U,. Then U is an open set in X containing # with
i=1

the property that h(U XI) c Q(x, ¢). .

Let tel. We shall show that k,(p) = p. To see this, let W be an open
set about p (assume for convenience that W = Q(p, ¢)). Since z¢T,(h,(X)),
there is a point yehy(X)N U such that 2ynW # Q. Now the arc xy is
contained in the union of two arcs xh,(y) and yh,(y). However, yh,(y)
ch({y}xXI) = H(UXI) = Q(zr,e) and so yh,(y)nW =@. Therefore it
must be ah,(y)NW # @. Pick zexh,(y)NW. Then zeh,(X) since h;(X)
is a continuum containing k() = # and h,(y). Thus h,(2) =z since b,
is a retraction, and we have shown that each open set W about p contains
a point 2z such that h,(2) = 2. From this it follows that A,(p) = p, and
this concludes the proof of (a).

(b) Let K be any subcontinuum of %,(X) containing « in its interior
with respect to k,(X). We wish to show that pe K. Let ¥V and W be disjoint
open sets about # and p respectively. We can assume that Vnh,(X) « K.
Construct, as in (a), an open set U about x such that U = V and k(U x I)
< V. Since meTp(ho(X)), .there exists a point yehy(X)NU such that
zyn'W # @. As before, we have xy < xh,(y)Uyh,(y) and yh,(y)NW =@.
Hence it must be zh,(y)NW = @. But x¢K and h,(y)eV, hence h,(y)
eVnh,(X)c K, and so zh,(y) =« K. Thus KNnW # @ and we have
shown that each open set W about p meets K. Since K is closed, it follows
that peK. Hence zeT,(h,(X)). This completes the proof of the
lemma.

LeEMMA 2. Suppose D is a dendrite and p, q, © and y are distinct points
in D with xy < pq. Then if p, and q, are sequences of points in D converging
to p and q respectively, there exists a positive integer k such that if n >k,
then zy < p,q,. :

Proof. Assume zepy for convenience. Let €, denote the component
of D\{z} containing p and C, denote the component of D\{y} contain-
ing ¢. Then O, and O, are open disjoint subsets of D. Choose k so large
that p,¢C, and ¢,eC, for » > k. Then clearly zy < p,q, for n > k.

THEOREM 2. Suppose h: X XI — X 18 a retracting homotopy on a den-
droid X. Then ho(X) is smooth if and only if hy(X) i8 smooth.

Proof. In view of the symmetry between h,(X) and k,(X) (by repla-
cing in hemotopy ¢ with 1—1), it sufficies to assume that hy(X) is not
smooth and to prove that h,(X) is not smooth. So suppose hy/X) is not
smooth. Then by Theorem 6 of [6], p. 302, there exist. distinct points
P, ¢, © and y of ho(X) such that xeT,(ho(X))Npq and yeT,(hy(X)) Npgq.
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Define a set B by

B = {0}u{te(0,1]: p and ¢ are fixed points of h|X %[0, t]}

and put ¢, = supB. Note {,eB.

 Suppose t,< 1. We will show a contradiction. Let D = k(pq X
X[ty 1]). Then D is a dendrite in X. For te[t,, 1], let p, = h/(p) and
q; = h,(q). Note that p,q, =« D. We claim that there is a positive number
d¢[0, 1 —¢,] such that for each ¢ satisfying t, < t < t,+ 6 we have zy < p,q,.
For otherwise there must exist a sequence ¢, in [f,, 1] converging to ¢,
such that xy is not contained in P, 4, for n =1, 2, ... But by the conti-
nuity of k, p, and g;, are sequences in the dendrite D converging to p
and g respectively. Hence by Lemma 2 the arc Pi, 4, contains xy for some n.
This contradiction establishes the existence of 4.

Now supposet, <t < t,+ 6. Then 2y = p,q, = h,(pq). Hence h,(x) = @
and h,(y) = y since h; is a retraction. Thus we infer that x and y are
fixed points of the homotopy h|X X[0, ?,+ 6]. Since xeT,(he(X)) and
yeT,(ho(X)), p and g are, by Lemma 1 (a), fixed points of the homotopy
h| X x[0, t,+ 6], and so t,+ d¢B which contradicts to the definition of £,.
From this contradiction we conclude that ¢, = 1.

Now we know that p and q are fixed points of the homotopy %. Hence
x and y are fixed points of 2. So by Lemma 1 (b) we have that zeT,(h,(X ))
and yeT,(h,(X)). Thus by Theorem 6 of [6], p. 302, we get that h,(X)
is not smooth. This completes the proof.

COROLLARY. A dendroid X is smooth if and only if there is a retracting
homotopy h: X XI — X such that h, i8 the identity and h, is a constant
mapping.

Proof. If X is smooth, then the homotopy % is given in [10], The-
orem 1.16, p. 371. If a homotopy A satisfying the conditions is given, then
X must be smooth by Theorem 2.

This shows that condition (iii) of Mohler’s characterization of
smoothness of dendroids ([10], Theorem 1.14, p. 370) is not necessary.

3. A point p in a continuum X is called a ramification point of X
in the classical sense if it is the common end point of three (or more)
arcs in X whose only common point is p. A fan means a dendroid with
exactly one ramification point (see [5] and [9]).

Investigating contractibility of fans, Mohler has asked in [10], p. 375,
whether there exists a fan which fails to be contractible. Answering this
question in affirmative we show a class of non-contractible fans; namely
we prove that every non-uniformly arcwise connected dendroid is not
contractible.

Recall that a subset X of a metric space is said to be uniformly arc-
wise connected (see [4], p. 193, [5], p. 12, and [6], p. 316) if it is arcwise
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connected and if for every number ¢ > 0 there is a positive integer %
such that every arc A in X containsg points a,, a,, ..., @, with the pro-

perties
k—1

A = U a0y
=0

and
é(a;a;.,) <e for every ¢ =0,1,...,k—1
(here 6(S) stands for the diameter of the set S§).
THEOREM 3. Every contractible dendroid is uniformly arcwise connected.
Proof. Let X be a contractible dendroid and let h: X XI - X

be a homotopy on X with h, being the identity and k, being a constant
map. Put h;(X) = {¢} and define for each rxeX

D, ={h(z,t): 0<t<1}.

Thus for each <X, the set D, is a continuous image of the clogsed
interval and so it is a locally connected continuum contained in the
dendroid X; hence each D, is a dendrite. By the definition, points x
and ¢ are in D,, thus D, contains the arc cx. Obviously, we have

X = U{D,: z<X}.

Further, let » be a positive integer. For every ¢ =0,1,...,n—1
put

D {h(w ) ; i< @:1}.

As previously, D% is a dendrite and
n—1
D, = U Ii.

We have to prove that X is uniformly arcwise connected. Since it
is arcwise connected by definition, it remains to show the uniformity.
It is sufficient to prove that, given any ¢ > 0, every ar¢c A < X is con-
tained in the union of a fixed number, say 2k, of arcs, the diameters of
which are less than . So let ¢ be an arbitrary positive number. The mapping
h being uniformly continuous, for this ¢ there exists a positive integer %
so large that for every x¢X, for every n > k, and for every ¢ =0,1,...
...,m—1 we have 6(D!)<e. Let A =ab be an arbitrary arc in X.

Thus A is contained in the union acUbc. As it was said above, we have
k—1

ac <« D, and bc = D,, whence, by taking n = k, we infer that A < U(D‘
D}). Therefore we can write i=

A = ko ((AnDj)u(AnDp)).

i=0
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By virtue of the hereditary unicoherence of X, each intersection
ANnD: and An D} is an arc (or a point or the empty set), so the last e-
quality gives the decomposition of the arc 4 into at most 2k subarcs of
the form AN D: or AN D} whose diameters are less than ¢ by the defi-
nition of k. This completes the proof.

It follows from the above theorem that the non-uniformly arcwise
connected fan described in [4], (49) and (52), p. 201, is not contractible.

One can ask. whether the inverse theorem is true, i. e. suppose X
is a uniformly arcwise connected dendroid, does it follow that X is con-
tractible? The answer is negative even if X ig a fan. To see this, consider
the following example.

Put (in the Cartesian rectangular coordinates in the plane) a = (0, 1),
b =(0,0), a, =(—1/n,1), ,bn = (—1/n,0), ¢, = (1/n,0).

Join a with b and with ¢, (n = 1,2, ...) by the straight line segments
ab and ac, respectively, join ¢, with b, by the semicircle ¢, b, = {(x, y):
x*+y% =1/n? and y < 0}, join b, with a, by the straight line segment
b,a,, and put

Ay =ab, A, =ac,Vec,b,Vb,a, for n =1,2,...

Let

' X =U4,
n=0

(see the figure). Thus X is a fan with the top ¢ and with end points
b, a,, ay, ... It is easy to see that X is uniformly arcwise connected (see
[4], C2, p. 193). We shall prove that X is not contractible. To show this,
recall that a space X is contractible if and only if C(X), the cone over X,
can be retracted onto its base X (see, e.g., [8], 1.3, p. 317).
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So take a point p in the Euclidean 3-space outside the plane (e.g.,
let p = (0,0,1)) and join it with each point zeX by the straight line
segment pz. The union of these segments, for all # in X, forms the cone
C(X). Suppose on the contrary that X is contractible. Then there exists
a mapping f: C(X) - X such that f(z) = x for each weX.

Now let T denote the triangle (i.e., a 2-cell) with vertices a, b and p.
Thus T = C(X). Let a continuum K < C(X) be such that K =« T, peK
and KnA, # @. We shall show that Knf~'(b) # @. In fact, let ze KN A4,
and let K, be the copy of K lying in the triangle with vertices a,, b,
and p in the same manner as K lies in 7. Thus pe¢K, and K,Nna,b, #* O
by construction. Let z,¢K,Na,b, be the copy of . Therefore we have
K = Lim K, and ¢ = limuz,,.

n—00 n—00

Since every subcontinuum of X is a dendroid (see [3], (49), p. 240),
thus an arcwise connected continuum, f(K,) contains the arc f(p)z,
from f(p) to f(x,) = =,, hence

Ls f(p)@, = Ls f(K,).

On the first hand, f(p)x, = f(p)avaz, for all (but possibly one)
naturals n. Since Ls ax, = ab,

Ls f(p)a, = f(p)avab.

On the other hand, Ls f(K,) =f(Ls K,) (see [7], Lemma 8.4, p. 23),
n—>00 n—00
thus
| Ls f(K,) = f(K).
n—>00

So we have f(p)avab < f(K), whence, in particular, bef(K), i.e.,
Knf'(b) 0.

Taking the straight segment ap as K, we see that apnf~'(b) # 0.
Since bef~1(b) by the definition of f, the proved property of each continuum
K shows that the triangle T' contains a continuum L which joins a point
of the side ap of T to the point b and which is contained in f~(d):

L <« Tnf-1(b).

Consider now a copy L, of L lying in the triangle with vertices a, ¢,
and p in the same manner as L lies in T (with respect to vertices a, b
and p). So we have

()L, =apnlk,

n=1
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¢,eL, for each n, and L = Ls L, by construction. Let geapnL. Thus

n—00

geL, for each n, and f(q) = b. Since f(c,) = ¢, by the definition of f,
we conclude using the same arguments as previously that, for each =,
the continuum f(L,) contains the arc be, from b to ¢,. Since a is in be,,
we see that each L, contains a point y, which goes into a under f, i.e.
y.eL, and f(y,) = a. Taking the limit y of a convergent subsequence
{yn,} of the sequence {y,} we see that y<L by construction, thus f(y) = b
by the definition of L, but f(y) = a by the continuity of f. The contra-
diction concludes the proof of the non-contractibility of X.

4. Borsuk [2] has constructed a mon-planar fan (i.e., a fan which
cannot be imbedded in the plane). This fan containg a homeomorphic
image of the non-contractible fan X constructed above, thus it is not
contractible by Theorem 1. The question arises whether every non-planar
fan is not contractible. (P 786)

In [6] we have introduced the concept of n-countably generated
dendroids (see [6], p. 303) and we have proved that a dendroid is smooth
if and only if each of its 2-countably generated subdendroids is smooth
([6], Theorem 7, p. 304). Similarly to this, it is our conjecture that a den-
droid is contractible if and only if every its 1l-countable subdendroid is
contractible. One way is clear by Theorem 1. So the question is whether
the contractibility of every 1-countable subdendroid of a dendroid X
implies the contractibility of X. (P 787)

Using the same methotl as for the example X in the end of Section
3 one can prove that no one of the dendroids D, described in [6], p. 305
is contractible. Hence, repeating the proof of Theorem 8 of [6], p. 305,
with a slight modification, we obtain the following

THEOREM 4. The property of not being contractible is not finite in the
class of dendroids.

A question is whether the property of not being contractible is not
finite in the class of fans. (P 788)
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