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Infinitesimal automorphisms of some G-structures
by RoBert WoLak (Krakow)

Abstract. The space of 1-jets of infinitesimal automorphisms of G-structures allows to
define a class of G-structures which have properties similar to those of infinitesimally transitive
structures. A generalized version of Amemiya’s theorem for germs of vector fields is proved and
used to establish integrability of some distributions. Several other propositions are proved for
distributions and almost product structures including a generalization of Gauchman’s theorem
on maximally mobile Riemannian almost product structures.

In the paper we consider the space of 1-jets of infinitesimal automor-
phisms of G-structures. This space allows to define a class of G-structures
which have properties similar to those of infinitesimally transitive structures.
A generalized version of Amemiya’s theorem for germs of vector fields is
proved and used to establish integrability of some distributions. In the last
part of the paper we generalize Gauchman’s theorem on maximally mobile
Riemannian almost product structures. Several other theorems on distribu-
tions and almost product structures are proved using similar method.

In the paper there are considered smooth manifolds and vector fields
only. A G-structure B is said to be infinitesimally transitive if the sheaf % (B),
obtained by lifting the sheaf % of germs of infinitesimal automorphisms of B
from the manifold M to B, acts transitively on B. Let us consider that action.
If £, is the flow of an infinitesimal automorphism X, the vector field X has
the flow f,. We can always consider B as a submanifold of the manifold
J1 (M) of 1-jets on the manifold M.

Then

.rl(.VI,'-', yn; y;)=(yl+al(t’ y)a"': yn+an(t: .V), Z a;';(ts .V).Vf),

k=1

where

Jafi=(a (6, ), ..., a,(t, y); at, y))
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and

0 ¢ 0 '
X = —f(y) (a_ a (L, y),--- P a,(t, y); }: a a(t, )y} )

t

é off
=(X1(.V)’“" X,(»; Zat afk )

=(X1(y),..., X.(0); g(;T:(y)'YS‘ )

According to Proposition 3 of [7], a sheaf £ of Lie algebras of germs of
vector fields is transitive if and only if the distribution .# (%) is of maximal
dimenston. Applying this proposition to our case, we get that the distribution
M (%) has to be of maximal dimension, so the space

{( Xl(y)r" *s n(y) (y) ); (X))'qu)' }

at each point y of the manifold M has to have the dimension equal to the
dimension of B. Thus the following proposition has been proved:
ProrosiTioON 1. Let B be a G-structure on a connected manifold M, m
=dim B and G be a connected Lie group. The G-structure B is infinitesimally
transitive if and only if the distribution # (B) is of dimension m, where

M (B), ={( X1 0) s Xa; 2 ( ) )

X= Z X,0;€e%U(dom X), yedom X }
i=1

For infinitesimally transitive structures it is possible to give a theorem
similar to that formulated by Bernard [2].

THEOREM 1. Let B be a G-structure and B’ a G'-structure on M.

@ If ‘the sheaf U ~ %' (B) is transitive on B, then there exists e GL(V)
such that B' > B-1l.

— Ve o d

(i) If the sheaf % %' (B) is transitive on B and the sheaf % N %' (B’) is
transitive on B, then there exists le GL(V) such that B' = B-l.

Now we are going to derive several useful propositions concerning some
special cases.

ProrosITION 1. Let B be a G-structure on a connected manifold M, m
and #' a regular distribution of constant dimension k' on a connected manifold
M. If there exists a G-structure B related to .# such that .# (B) is of maximal
dimension and % > U, then #H = .4 .
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Proof. The orbits of .# (%) are the connected components of B. The
orbits are G°-structures (G° — the connected component of ¢ in G). As
infinitesimal automorphisms preserve connected components, there exists
le GL(V) such that B'(G'°) > B(G%! (B’ — any G'-structure related to the
distribution .#’). Therefore, G’° > 17'G°l. According to the construction of
G-structures related to distributions G = G(V;), G' = G(V,), where V; (resp.
V,) is a vector subspace of V of dimension k (resp. k') and G(V)) is the group
of all automorphisms of V which preserve V.. Then G°(V3) > G°(I"'V;) and
g(V2) = g(I"'¥,) which implies that V, = I~!V,. Therefore,

M =B (V,)=BI(Vy)=BI(I"'V,) =B(V,) = M.

ProrosITION 3. Let #, .#' be two almost product structures on a

connected manifold M and M' = @ M, where S, = {j: dim .#, =i}. Then
Jjes;

M = A" if there exist G-structures B and B’ — the former related to .#, the
latter to .#' — such that the distributions # (B) and # (B') are of maximal
dimension, and U > U.

Proof. The similar argumentation as in Proposition 2 proves that g’
= ["71gl for some e GL(V). The vector space V, both as a g’-module and a
I”gl module, (I"'VY > ¥} when dim V, = p, so (I"'V) = (V'P. Analogously,
isomorphic. Let p = min dim ¥/. Since (I"'Vy+V is a direct factor of the
I"'gl module, (I"' VY > V; when dim V,;=p, so (I"! VP =(V'). Analogously,
we get (I"'V) = (V') for 1 <i< n, hence (#') =B (VY = Bl(I"'Vy = 4.

One of the most important problems in the theory of infinitesimal
automorphisms is the assessment of the dimension of the stalks of the sheaf
% for a given G-structure. The following proposition deals with the problem
of the codimension of stalks.

PrOPOSITION 4. Let B be a G-structure and % be the sheaf of germs of the
infinitesimal automorphisms of B. If the stalks of the sheaf % have finite
codimension, then G = GL(V)* or G = GL(V).

The proof of the proposition is based on the following algebraic lemma:

LEMMA 1. Let A be the Lie algebra of all germs at a point m of vector
fields on a manifold M. If C is a proper subalgebra of A of finite codimension,
then C = C(m), where C(m) ={XeA: X(m)=0}.

Proof. We are going to follow Amemiya’s method. Let us assume that
C¢C(m). Then there exists a vector field Z, (Z),€C which does not
disappear at the point m, i.e, Z, # 0. We can find a germ (f),, (f a smooth
function on M) for which (Z(f)), is invertible in C;7 (M). Later on we denote
(Z)m by X, and (f), by fo.

Put C'={X€eC: [X, Y]eC for every YeA4}; C' is an ideal of C. For
XeC ad X; Y—-[X, Y] induces a linear transformation Ty of the finite
dimensional space A/C. The ideal C’, being the kernel of the mapping T, is of
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finite codimension in A. The set E of geC% (M) for which gX,eC’ and
gfoXo€C 1s a subspace of C; (M) of finite codimension, since C’ is of finite
codimension in A.

Now we can define the following set of germs of functions:

F={geC3(M): gA=C}.

First of all, we are going.to prove that the codimension of F is finite, by
showing that E c F.
Let XeA and geE; then

C3[9foXo, X1 = fo[9Xo, X1— X (fo)9Xo

and _

C3[gXo, foX] = folgXo, X]+gXo(fo0) X;
hence
§)) CaX(fo)gXo+9Xo(fo) X.
Substituting X by (1/X,(fo)) X (fo) X, in (1), we obtain

C3X(fo)gXo.
Taking into account (1), we get
C29Xo(fo) X.
Substituting X by (1/X,(fp)) X, we finally have
CogX.

That ends the proof of the relation E < F.
Let geF. Then for any XeA

Ca[gX, Xo]l =9[X, Xo]-Xs(9) X.
Since g[ X, X,]eC, Xo(g9) X is also an element of the algebra C. Thus geF
implies X,(g)eF. ,
There exists a non-zero polynomial P such that P(fy)eF, since F is a

subspace of finite codimension. Then X, (P(fy)) = P’ (fo) Xo(fo)eF, which
means that

P (fo) Xo(fo)(1/Xo(fo)) XeC for any XeA.
Therefore P'(f,)e F. We analogously get P’ (fo)ef , so after a finite number
of such steps we prove that

leF,
which implies that 4 = C.
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Proof of the proposition. The stalk %,, is of finite codimension, so
either #,, = % ,, or %,, < C,,. It is possible to find an open set U such that

VmeU, Up=%Zn

Otherwise, the set L={meM: %, cC,} is dense in M. Let X be an
infinitesimal automorphism of B. Then X|; 4mx =0 and since Lndom X
> dom X, we have X = 0. A contradiction.

The GP°-structure B% U has the sheaf of germs of the infinitesimal
automorphisms #|U = Z}U. According to Théorem 1, G® = GL(V)".

We can improve Lemma 1 by emphasizing the most important points of
the proof. Let A be any Lie algebra of germs of vector fields at a point m.
Then R={feCL(M): fA < A} is a ring.

LEMMA 2. Let A be a Lie algebra of germs of vector fields at a point m,
and C a subalgebra of A finite codimension. If there exist X,€C and fyeR
such that 1/Xo(fo)eR and (1/Xo(fo)) X (fo) Xo€ A for any X €A, then C = A.

Proof. Let us define

C'={XeC: [X, Y]eC, for any YeA},
E={geR: gXoeC, gfoXoeC,
F={geR: gAcC}.
With the sets C’, E and F defined as above, the proof of Lemma 2 is the same

as that of Lemma 1.

Lemma 2 applied to the case of two distributions yields the following
result.

THEOREM 2. Let #, #' be two distributions. If the following conditions
are fulfilled:

(1) the sheaf ¥ is transitive,

(ii) #' is a completely integrable distribution (! )

(iii) there exist a point m, and an open neighbourhood W of that point
such that for any point m dim (%'/%),, < + 0

(iv) A*, the smallest involutive distribution containing # and Jl’, is at
most of dimension n—1 (n = dim M);
then # is a completely integrable distribution. If, additionally, U > U, then
M= M.

Proof. At the very beginning we will determine the algebras %,, in
relation to the adopted maps of .#’ and .#*. To achieve this we need to
prove a lemma.

(!) This condition is equivalent to the hypothesis that .#’ is of constant dimension and the
distribution .# (B) is of maximal dimension for a G-structure related to .#’ (see Proposition 8).
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Lemma 3. Let #, M’ be two completely integrable distributions and
M = M'. Then for any point m of the manifold M there exists a map (U, ¢) at
this point such that #\U = >04,..., 4 and M'\U = >0, ..., 0,,{, where
dim .# =k and dim 4’ =k’ .

Proof. Because of the theorem proved in [6] it is sufficient to find
locally a completely integrable distribution .#” complementary to .# in .#",
ie, M"+.#|\U=#U.

Let (U, ¢) be an adopted map for the distribution .#’ at a point my, i.c.,
MU = >0y, ..., <. Since # is of constant dimension, it is possible to find
Xi,..., X3, C* independent vector fields on U (we can always choose a
smaller U) such that MU =>X,,..., X,(.

Then X; = z 6.

At each pomt m of U, rank (f;/(m)) = k. We may assume that (f;/(my)),
i,j=1,..., k has the rank k. Taking a small enough U, we see that the rank
of (f,j(m)), i,j=1,..., k, is equal to k for meU.

Let A(m) = (a}(m)) be the inverse matrix of (f;/(m)), i,j=1,..., k. Then

koK K
i=1 j=1 j=k+1
The vector fields Y, for [ =1, ..., k are C* independent. The distribution .#"
= D041, ---» O is the distribution we have been looking for.
According to Lemma 3, in a certain neighbourhood W of m,

MNW =)0y,..., 04, I<n—=1, MW =>d,,..., <

Then ' (W)=1{X: X =Y fi0;, §;(f) =0 for i > k', j <k’}. In this case R,
={feCy(M): 3;(f)=0 for j<Kk'}. We will prove that (0,),€#,, for a
slightly modified coordinate system at a certain point me W. The vector
space {(f Om,}>f — a smooth function of x,, is of infinite dimension. Hence,
for a certain f, (f0p)m,€¥m,, Which means that fd,/]V — V is an open
neighbourhood of my, ¥V <« W — is an infinitesimal automorphism of .#.
There exists me V such that f(m) # 0 and (f4,),, € ¥,,. Therefore #,, and %,,
conform to the hypothesis of Lemma 2, taking X, = @, f, = x,. Hence %,
= %, Let us choose infinitesimal automorphisms X,, ..., X, at the point m
such that

dim )j2X,;{ =dim B (B — a G-structure related to .#’).

This relation is true for a certain open neighbourhood U of m. According to
Proposition 2, #'|U = #|U. Since the sheaf # is transitive, .# is a
completely integrable distribution (see [5], [7]). In the case of %' > %, of
course, .# = A .
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A proposition very similar to Proposition 4 can be proved for almost
product structures, here we do not assume these distributions to be of
constant dimension.

ProposiTiON 5. Let M =(M,, ..., #,) be an almost product structure,
Jfor which the sheaf % is regular. If the codimensions of the stalks of the sheaf %
are at most denumerable, then k =1 and 4, = .Hy. (M= T,M for each
point m of the manifold M) '

Proof. The distributions .#; are of constant dimension as the sheaf #
is transitive (see [7]).

Then

dim (A,] €'),, < dim (M) M, A\ U),, < dim (Z/U),, < Ry,

where %' is the distribution generated by .#;n%. The distribution %' is
completely integrable. Of course % = %, and %' is involutive.

Now, we will prove that .#;, = €'. Let me M. As distributions .#;, €
are of constant dimension, it is possible to construct a distribution S such
that .#,|U = 4 JU+S for a certain open neighbourhood U of the point m.
Then dim S,, < dim (.#,;/ €),,, hence S = 0. (See [7].)

Therefore .#; is a completely integrable distribution. This is equivalent
to the following condition:

VmeM I(U, p)eAatl(M, m), ¢(x) ={X,,..., X): )¢y,..., (= M| U.

If we assume that .#; is not trivial, it means that 0 < p < n. Let us consider
smooth functions on U such that ¢,(f) # 0. The dimension of the space of
the germs of f(, at a given point is greater than c. Then

[01,f8n] = f[01, Onl+0,(f)0n = 0,(f) 05 £ 0.

Therefore f 0, is not an infinitesimal automorphism of the distribution .4,
which leads to the contradiction of the hypothesis on codimension.

Note. It is obvious that an infinitesimally transitive G-structure B is a
connected manifold. Hence it is impossible to talk about infinitesimally
transitive structures for G(V;) or G(V,, ..., V). These two Lie groups are not
connected. At most we can tell whether the distribution .# (B) is of maximal
dimension or not. We propose to call G-structures for which the dimension
of .# (B) is maximal, “almost infinitesimally transitive”.

For almost infinitesimally transitive structures the following propositions
are true:

PROPOSITION 6. An integrable G-structure is almost infinitesimally
transitive.

ProposiTiION 7. The structure tensor of an almost infinitesimally G-
structure B is constant on connected components of B.

5 —Annales Polonici Mathematici XLITL3



290 R. Wolak

ExampLE 1. Let .# be a distribution on a manifold M. In this case only
integrable structures are almost infinitesimally transitive.

ProposiTION 8. 4 is a completely integrable distribution if and only if
each G-structure related to # is almost infinitesimally transitive.

Proof. According to Proposition 7 the structure tensor of a G-structure
is constant on connected components of B, then the structure tensor is zero;
hence the distribution is completely integrable (see [3]).

Note. Exactly the same proposition is true for almost product structures.

ExampLE 2. (Riemannian almost product structures.)

DeriniTioN. A Riemannian almost product structure of the type
(ny, ..., n,) is an n-dimensional Riemannian manifold M with the positively
defined metric and r regular distributions .#; of constant dimension on M
satisfying the following conditions:

(1) diin #; = n;,

() TM=4,0..04,,

(i) the subspaces .#;(m) are mutually orthogonal.

Gauchman in his paper [4] introduces the following special structure:

DerFinITION. A Riemannian almost product structure of the type
(ny,..., n,) is called a maximally mobile Riemannian almost product structure
or simply M-structure of the type (n,, ..., n,) if for any orthonormal adapted
frames R =(x; ey,..., e,) (ie., ¢e.#; for some j;) and R, =(y; ¢, ..., ¢,)
having the same orientation, there exists a local automorphism of the M-
structure mapping R onto R,. '

The proofs of the next two propositions are straightforward.

ProposiTiON 9. The structure tensor of an M-structure is constant on
connected components.

ProrosiTioN 10. An almost infinitesimally transitive Riemannian almost
product structure is an M-structure.

H. Gauchman proved the following proposition:

ProposiTioN 11. If M =(M,, ..., #,) is an M-structure of the type
(ny,...,n) and for some i (1 <i<r) n; #2, then the distribution .#; is
involutive.

Proposition 7 allows us to formulate a second version of the previous
proposition. The proof is based on a lemma which is proved below.

LEMMA 4. Let .# be a Riemannian almost product structure without
distributions of dimension one. If the structure tensor of .# is constant on
connected components, then the distributions are completely integrable.

Proof. Let us choose any distribution .#; from .#. By B we will

denote a G-structure related to .# and by B; a G;-structure related to
M;. The structure tensor c¢; of B; (c(p)eHom (V A ¥V, V)/d Hom (V, g)
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~ Hom (W A W, V/W) (see [3])) is obtained from the structure tensor ¢ of
B, since B c B;. Therefore c; is constant on connected components of B
which means that

1) c(pa) =c(p)=u for peB, aeG°;

computing, we get
c(pa) =r(@ Ne(p=r@a Hu=u,
(2) r(a)u(vy, vy) = au(@™ 'vy, @~ 'vy) = u(vy, vy).

In our case, Hom (W A W, V/W) is isomorphic to Hom (W A W, W;) with
the induced representation, where W, is the subspace which is complemen-
tary to W and left invariant by G. Therefore, choosing a belonging to
80 (n,) x... xS0 (n,) such that g; =1, (2) can be written in the form

au(v,, v;) = u(vy, v,)

for any aeS =S0(n;) x... xSO(n;- ;) xSO(n;,,)%...xS0(n,).

This means that u(v,, v;) generates 1-dimensional invariant subspace of
W,. Since W, as an S-modulc is semi-simple and representations of SO (n;) on
W, are simple, u = 0. Hence .%, is involutive.

THEOREM 3. The underlying almost product structure 4 of an M-structure
with n; # 1 is involutive. '

Proof. Because of Lemma 4 and Proposition 9 the distributions of .#
are involutive. '

THeOREM 4. The underlying almost product structure of an almost in-
finitesimally transitive Riemannian almost product structure without distribu-
tions of dimension one is involutive.
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