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1. Consider the third-order differential equation
(1) " +az” +ba’ + f(@) = p (1),

where a, b are positive constants and functions f(z), p(f) are defined
and continuous for all # and ¢ and such that (1) has a solution satisfying
any initial conditions. Moreover, suppose that f(x) and p(t) satisfy the
following assumptions:

{(2) flxle>0 for x50,
(3) If(@)| <M for all z,
(4) Fa)= [ f(w)du>co a8 |a|—>o0,
0
¢
(5) p@i<p, [P =|[p@ds|<p foranz.

THEOREM 1. If (2), (3), (4), (5) hold and function p(t) is periodic
with the pertod w, then equation (1) has at least one periodic solution with
the period w.

This theorem strengthens the result of J. O. C. Ezeilo ([1]), who
has proved the existence of a solution of (1) with the period nw, where
#>1 is an integer. In [1] in place of condition (2) it is assumed that
f(z)z > 0 beyond the segment {(z,,z) (—1< z;, <0 <z, < 1), but this
is inessential. As can be proved, the replacement of the function f(x) in
a compact set by any continuous function has no effect upon the
boundedness of the solutions. Moreover, the assumption f(x)sgnz > m> 0,
|z| > 1 used in [1] is replaced by the more general assumption (4).

The method of proof is the same as the one used in the 3 part of [1].
It consists in showing, by the use of the Leray-Schauder technique for
Banach spaces, that a certain operator in the Banach space induced
by (1) has a fixed point.
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2, Proof of Theorem 1. Let us consider alongside with (1) the
family (E2) of differential equations

(ER) o +a(u)a” +B(p)a’ +y(p)o+p2f(x) = up(t), ue0,1),
where
(6) a(p)=pa+Q—p)a,, PBlp)=pb+1A—p)b, y(p)=QQ—pu)e.

Numbers a,, b;, ¢ are certain positive constants chosen in such a way
that the equation

*+a,0*+be+¢c=0

bhas real distinct roots, and the following inequalities are satisfied:

(7) ¢ < mina(u)minf(u),
(8) 0 < min (Bw)]a(p)) -

We shall always use in the sequel a, 8,y instead of a(u), f(u), v(u).

Let X* be a space of continuous functions with the period w having
the norm |'z| = max|z(¢)|. We define in X* the operator L by ascribing
to any function ¢(?) ¢ X* the function £(f), which is the solution with
the period w of the differential equation

(9) " 4+ a, 2" +b,& +cx =p(t).

It can easily be demonstrated, by finding the general solution of (9)
and remembering the conditions imposed upon a,, b,, ¢, that the ope-
rator L is well-defined on the whole X* and that L is linear in X*.

The equation (E}) is equivalent to the equation

z'" +a1w” +b,%" +ecx = uP(u, ),
where

P(u, @) = (a;— a)x" +(by— b) &’ +(2— p) co— puf (x) + 2 (2) ,

and this is not periodic in ¢ unless z and p are themselves periodic. Thus
if, in the sequel, we suppose that p(f) has a period w, then it follows
that any continuously differentiable function x(f) with a period o is
a solution of (Ej}) if and omnly if

@ = pulP(u, o) .

Let X denote the linear space of twice continuously differentiable
functions z(¢) with a period w, having the norm |z| = max|z'’| + max|z’| 4
+ max |z|. A function x ¢ X is a solution of (E}) if and only if it satisfies
the equation

(6u) o—pl(p,2) =0,
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where the operator T'(u, z) is defined by
T(p,2) =1P(p,2), (p,2)e0,1)xX.

(Observe that from the definition of @ and L it follows that the
operator T'(u,z) is continuous in both arguments and completely con-
tinuous.)

Thus in order to prove Theorem 1 it is sufficient to show that the
equation

(&) 2—T1,2) =0

has at least one solution.

Suppose that an a priori bound |z]| < 4 is known to exist for any «
satisfying (§,), where A is a constant independent of u. Then from the
Leray-Schauder theory it follows that the equation (&,) has at least one
solution e X.

We shall demonstrate that solutions of (E}) are bounded with their
first and second derivatives by a constant independent of u. In view
of the definition of the norm in the space X, it follows that solutions
of (§,) are uniformly bounded with respect to u.

If we consider the differential system

=y,
(Ey) yI =2z,
¢ =—az—py—pf@)—yr+pBp, O0<p<1

corresponding to (E}), then to prove the boundedness of solutions of (Ej)
it is enough to prove the following theorem:

3. THEOREM 2. If (2), (3), (4), (B) hold, then there exists a constant
D independent of u such that for any point (xy,Ye,2) the solution (),
y(t), z(t) of (E,) determined by the initial conditions

z(l) =Ty  Y(ho) =Y, 2(h) =2
satisfies the tnequalily
lz(®)|+ |y ()] +[2()]| < D,

for t > t,+T, where T depends only on particular (zy, Yo, 2,) chosen.

The proof of the theorem consists in constructing in the space B x I
(I = {t: t>0}) a domain 4, with the boundary Z, included in the domain
|#| +|¥]| +|2| < D, teI and such that:

(i) all trajectories of (E,) eross X only inwards,

(ii) each trajectory of (E,) beginning outside A4 reaches X after
a finite time, which depends only upon the initial point of the trajectory.
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2 congists of surfaces defined by conditions W,(z, vy, 2; u) = C,

Wz, y,2,t; u) = K, where C, K are positive constants suitably chosen
and W,, W, are some functions stated in the sequel.

4, LEMMA 1. Let the functions a, f,y be defined by (6), where the
numbers a,, b, ¢ satisfy (7) and let k be a constant independent of u such
that

(10) lla<k<pBle for all pe0,1>

(by (7) such a number can always be chosen); then there exist positive num-
bers &, A, A, such that for e = ¢, | = A;, L = A, the quadratic forms

D(x, y, 2; ) = yo* +k(BY* +2%) + ay® + 2y2 + 2y (exz + kay) —
| —Uyat 9t +2),
Y(z, y, 2; p) = ey*s® +y*(f— ky) +2*(ka—1)— ye(yz— awz— Poy)—
—L(y*z*+y*+2%), pe0,1)
are positive semi-definite and this property holds uniformly in <0, 1).
Proof. We shall prove that if ¢, 4,, 4, are sufficiently small, then

for ue<0,1), e =¢, 1l = 4,, L = 1, the principal minors of the matrices
of the forms @ and ¥ are positive. These minors are

M1, e, p) =k—1,
M1, e, p) = (kf +a—1)(k—1)—1,
My(l, e, p) = y(1—U(kp +a—1)(k—1) + 2ky’e— y*e*(kf +a—1)—

—y(A=)—y¥k—-1),
N«(L, e, 4) = ka—1—L, |

Ny(L, e, p) = (ka—1—L)(p— ky—L)— 1%,
Ny, e, p) = y(e—L) (f— ky—L) (ka—1—L)—1/deafly—
—}e*a¥(f—ky—L)—}e*p¥ka—1—L)—}e*y*(e—L)].
We have
M0,0,u)>0, Ny(0,0,u)>0 (i=1,2) for pe0,1);
My(0, 0, p) = y(ka—1) +y(B—yk)k* >0,

0

7¢ Va(0, 0, p) = y*(f— ky) (ka—1) > 0

by (10) for 0 < y < 1. In view of the continuity of functions M;, N;
(j =1, 2, 3) the above inequalities imply that for ¢, 4,, 4, small enough
the quantities M;(4,, ¢, u), Ny(44, ¢, ) are positive for all x satisfying
0<<u<1 It is easy to show that ¢, 1,,1; can be chosen independent
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of pu. Thus for e =¢, l =1, L= 2, ¢ and ¥ are in the segment <0, 1)
positive definite. Since My(l, ¢,1) = Ny(L, e,1) = 0, then from the above
considerations it follows immediately that @(z, y, 7; 1), ¥Y(z, ¥y, 2; 1) are
positive semi-definite, and this ends the proof of Lemma 1.

5. Suppose that ¥ and ¢ are defined as in section 4. We define
functions W,(z, v, #; u), Wiz, y, 2,t; u) as follows:

2W,(@, ¥, 25 p) = 2pF (@) +y2® + (By® +2) + ay® + 2yz + 2y (eaz + kay)
Wz, y, 2, t; p) =2+ ay +pr—pP(?).

By Lemma 1 we have the inequality 2W,— 2u2F(z)— A,(y2® +4?+2%)
= P(z, y, 2; u) >0, which yields

(11) g(@) +4(y*+2%) <2W,(z, 9,2 p),
where
2¢h, 7
(@) 2F () 4-cA a8 °
Since g(x) > 0, for all z and g(z)—oo a8 |#|>o0 Wy(z,y, #; u) is positive
definite and

(12) Lim Wy=, ¥, 2; p) = oo
(z,y.2)>0

9(2) = min [24°F(2) + A ya?] = F
ne0,1>

uniformly with respect to u.
We define in EP xI the sets

Ai(py C) = {(®, ¥, 2,1): tel, Wix,y,2; p) <C},
Aolp, K) = {(2, ¥, 2,1): tel, |Wyz,v,z2,t; p)| <K},
A(p, K, C) = Ay(p, C) ~ dy(pe, K), 2Z(u, K, C)=TFrd(p, K, 0),
E(r,g ={=,9,2,0): tel, [z| >q, y2+22>1%.

For arbitrary fixed positive constants & and 8,, we choose a number 7,
such that for y** +4*+2° > 7}

(13) — Y2+ +2%) +d(|yz| +|y| +]2]) < —s.

It can be found by straightforward calculation that there exists
a constant h,(r,) such that for sufficiently large C the surface W,(x, v, 2; u)
= C considered for y*+2" <r} lies in the layer |z— x| < hy(r,), Where
the number 2. > y/2C/c is the solution of the equation Wi(u, 0, 0; u) = C.
From this it follows that a constant h, can be found such that for C
large the points of intersection of the surface W,(z,y, 2; u) = C and
the plane

(14) 2+ ay +pr = B(V2CJe—ho) +p, ue<0,1)
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lie outside the domain y*+2* < ;. Indeed, it is enough to choose %, so
large that the points of (14) considered for y*42* <r; will lie outside
the domain |z— @] < hy(7,)-

LEMMA 2. Let us put K(C)= B(yY2Clc—h,), where h, is chosen as
above. Suppose that the hypotheses of Theorem 2 are satisfied and let q be
a positive fized constant; then there exists a number C, such that

(15) _ Frdu, C) ~ FrAz(.“’ K(C)) C E(ro, @)

holds for C > C, and all pe0,1).
Proof. The inequality

|2+ ay + pr— puP(t)| = |2+ ay + po— p|

implies the inclusion of A,(u, K(C)) in the set |z+ay -+ pr—p| < K(0).
Hence by the definition of K (C) all points of the produect Frd,(u, C) ~
~ Frdy(u, K(C)) are in the domain y*+2*>r; for C > C*. To prove
the inclusion of this product in the layer |z|> ¢, we will show that if
C is large, then for arbitrary fixed ¢ eI the system of equations

Wig,y,2, ) =0,
Walq, v, 2, t; p) = K(O)
has no real roots.

Calculating 2z from the second equation and putting it into the first
we get the equation

(16) 1924, —y(4,/C+4,)+B,C+B,Y/C+B, =0,

where A, = kf+kat—a, A, = V2/e(kaf—p), B, = kftjc—1 and coeffi-
cients B,, By, A; are bounded for all (f, u) e I x<0,1).

The expression Aj;—24,B, = 2/c[(ka —1)(ac — f°) +kB*(c — kp%)] in
virtue of (8) is megative; thus

(4,1/C + 4] —24,(B,C+B,)/C+By) < 0
for large C (say C > C**), whence equation (16) has no real solutions for
C > C**. For a constant C satisfying C > C, = max(C*, C**) we get (15).

6. Proof of Theorem 2. Let us put d = max(kM +kp, p, £p)
and define the constants 7,, ¢, Cy, K(C) as previously in section 5. For
¢ > ¢, we define the function V(z, y, 2, t; #) by

Wiz, y, 25 p)
for (w,9,2, t)eFI‘Al(,u,C)r\E(y,K(C),C'),
Viz,y,2,t u)=1 11 2
9# G 4 (B Waz, y, 2, t; P)+ho) ¢/2

{ for (x,y,2,1) e Frdyu, K(C)) A Z(u, K(C), C).
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Each point (z,y,2,t) of Z(u, K(C), C) satisfies the equation
Viw,y,2,4; p) =C
By (12) V is positive definite for all z € (0,1> and

(17) lim V(z,y,z,1 p) = oo
(z,¥,8)>00

uniformly in (, 4) € I x <0,1). By (11) the surface Z(p, K(0), C)
included in the cylindrical domain D(C) :

(18) D(C)={(z,9,2,1): tel, }g(x)+1h(y*+2*) < O},

whose directrix is bounded for each positive C.
The derivative of V' along any solution of (E,) is negative. In fact,
if (z,y,%2,t) e Frdy ~ 2, then V =W, and by Lemma 2 |z| > q. Hence

(19) v=2 1Wz+ho)W§ =— 260 f (r)sgne < —s8, < 0.

B (ﬂ 3
8, is positive because the expression }/'2Cec/p? is positive for all ped0,15,
c> C0 and from the inequality |z|>¢ and the boundedness of
Z(u, K(C), C) it follows that |f(x)] has a positive lower bound. If
(z,y, 2, t) eFrA ~ 2, then V = W, and the derivative of V along the
tra]ectory of (E,) is given by the expression

V' = Wi = —pPyef (x)2— ey®0®— y*(f— ky)—2%ka—1) +
+ &y (y2— awz— Puwy)— kzpf(x) + p (2) (k2 +y +-eyz) .

By Lemma 2 from (z, v, 2,t) e FrA, ~ X it follows that y*+2* > 7§
and this implies (13). Next

(20) Wi=—Y(,y,2; p)— udyef(w)r— kep?f (o) +p (¢) (kz 4y + ey)
<—Y(x,y, 2z u)+a(|yz|+y| +e))— Ly +y2 +22) < —8;

in virtue of Lemma 1 and (13). Putting s = min(s,, s,), we get
(21) V'<—8<0

along the solutions of (E,). Notice that the constant s is indepen-
dent of #, and x. Hence the surface X2 defined as 2= X (y, K(GC,), 0..)
satisfies (ii) for each € <0,1). X has property (i) because (21) remains
valid also for C = C,. There exists a constant D > 0 such that the set
D(C,) defined by (18) is contained in the domain te I, |2|+|y|+|2| < D,
and so 2 also lies in this domain. Thus Theorem 2 is proved completely.

11*
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7. For 4 =1 Theorem 2 gives an elementary proof of the result
obtained in a different, more complicated way by J. O. C. Ezeilo ([2]).
Moreover, his condition f(x)sgnz > m > 0, for |¢| > 1 is relaxed to (4).
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