FASC. 2

MATROIDS AND DUALITY

BY

D. A. HIGGS (WATERLOO, ONTARIO, CANADA)

Whitney defined duality for finite matroids in [8], and in [5] Sierpiński described the same duality, but for the much more extensive class of Fréchet (V)-spaces. In the present note* this duality is used to define matroids which are not necessarily finite, nor even finitary. The resulting definition is closely related (see Section 4) to Minty's elegant self-dual definitions [2] and provides a feasible starting-point for a solution to Rado's Problem P 531 [3], namely, to construct a theory of non-finitary matroids. Within the class of all matroids, two subclasses are distinguished: B-matroids (Section 3) and C-matroids (Section 4). B-matroids, especially, have properties closely analogous to those of finite matroids. Some of the results obtained here are used in characterizing those infinite graphs which give rise to matroids [1].

- 1. Spaces in general. A space (E, ∂) is a set E together with a function ∂ from the set $\mathscr{P}(E)$ of subsets of E to itself such that
 - (i) $A \subseteq B$ implies $\partial A \cap \partial B$, and
 - (ii) $A \preceq B$ implies $B \subseteq A \cup \partial A$ or $B \cap \partial B \subseteq A$.
 - $(A \bowtie B \text{ means that } A \text{ is covered by } B \text{ in } \mathscr{P}(E) \text{ ordered by inclusion.})$

It is easily verified that an equivalent definition of a space is obtained if we replace (ii) by the condition: $x \in \partial A$ implies $x \in \partial (A \setminus x)$. If (E, ∂) is a space, let $\overline{\partial} A = A \cup \partial A$ for all $A \subseteq E$; then $\partial A = \{x; x \in \overline{\partial} (A \setminus x)\}$ for all $A \subseteq E$. Schmidt [4] discusses various properties of spaces, particularly those relevant to matroids.

(1) If (E, ∂) is a space, then so is (E, ∂^*) , where $\partial^* A = E \setminus \partial(E \setminus A)$ for all $A \subseteq E$.

This is evident from the form of conditions (i) and (ii) above. Clearly $\partial^{**} = \partial \cdot (E, \partial^*)$ is called the *dual* of (E, ∂) and, for any property P of spaces, (E, ∂) is said to be *dually* P if and only if (E, ∂^*) is P. An alternative

^{*} Written while the author held a Faculty Research Fellowship from the University of Waterloo.

description of duality is conveniently stated using the notion of a painting [2]. A painting of a set E is a triple (A, x, B) where A and B are disjoint subsets of E, x is in $E \setminus (A \cup B)$, and $A \cup x \cup B = E$. Then clearly

- (2) The spaces (E, ∂_1) and (E, ∂_2) are duals of each other if and only if, for all paintings (A, x, B) of E, exactly one of the following two possibilities holds: (i) $x \in \partial_1 A$; (ii) $x \in \partial_2 B$.
- (3) If (E, ∂) is a space and $S \subseteq E$, then $(S, \partial.S)$ is a space, where $(\partial.S)A = S \cap \partial A$ for all $A \subseteq S$.

This is straight forward. $(S, \partial.S)$ is called the *subspace* of (E, ∂) on S. If (E, ∂) is a space and $S \subseteq E$, we write $\partial \times S$ for $(\partial^*.S)^*$ (so that $(\partial \times S)A = S \cap \partial(A \cup (E \setminus S))$) for all $A \subseteq S$) and refer to a space of the form $(T, (\partial.S) \times T)$, where $T \subseteq S \subseteq E$, as a *minor* of (E, ∂) . The notations $\partial.S$, $\partial \times S$ and the term "minor" are Tutte's [7]. It may be verified that the results 3.331 through 3.36 of [7] hold for arbitrary spaces.

Let A be a subset of a space (E, ∂) . Then A is said to be: closed (in (E, ∂)) if $\partial A \subseteq A$; pithy if $A \subseteq \partial A$; dense if $A \cup \partial A = E$; discrete if $A \cap \partial A = \emptyset$; a base if A is both dense and discrete; and open if $E \setminus A$ is closed. The following results are immediate.

- (4) If (E, ∂) is a space and $A \subseteq E$, then
 - (i) A is closed in (E, ∂) if and only if $E \setminus A$ is pithy in (E, ∂^*) ;
- (ii) A is dense in (E, ∂) if and only if $E \setminus A$ is discrete in (E, ∂^*) ; and
- (iii) A is a base of (E, ∂) if and only if $E \setminus A$ is a base of (E, ∂^*) (cf. [5]).

Note. When a given space (E, ∂) is being discussed, we usually omit explicit reference to it provided no ambiguity arises thereby. In particular, we write S for $(S, \partial.S)$; and "closed" for "closed in (E, ∂) " etc. This last usage is especially appropriate for pithyness and discreteness since these are intrinsic properties in the sense that A is pithy in (E, ∂) if and only if A is pithy in $(A, \partial.A)$ — likewise for discreteness.

- **2. Matroids in general.** A space (E, ∂) is said to be *transitive* if $\overline{\partial}$ is idempotent (and hence a closure). We define a *matroid* to be a space which is both transitive and dually transitive. Thus the dual of a matroid is a matroid.
 - (5) Let (E, ∂) be a space. Then the following conditions are equivalent:
 - (i) (E, ∂) is transitive,
 - (ii) $\partial(A \cup \partial A) \subseteq A \cup \partial A$ for all $A \subseteq E$,
- (iii) $\partial A = \{x; every closed set containing A \setminus x contains x\}$ for all $A \subseteq E$.

Proof. (i) and (ii) are clearly equivalent. Suppose that (i) holds and let $A \subseteq E$. Then $\overline{\partial}(A \setminus x)$ is the intersection of the closed sets containing

 $A \setminus x$ and since $x \in \partial A$ if and only if $x \in \partial (A \setminus x)$, (iii) follows. Now suppose that (iii) is given to hold and that $x \notin A \cup \partial A$. Then there is a closed set C such that $A \subseteq C$, $x \notin C$. But then $\partial A \subseteq C$ and hence $\partial (A \cup \partial A) \subseteq C$, so that $x \notin \partial (A \cup \partial A)$. It follows that (ii) holds, q.e.d.

On dualizing this result and applying (4), we obtain

- (6) Let (E, ∂) be a space. Then the following conditions are equivalent:
 - (i) (E, ∂) is dually transitive,
- (ii) $A \cap \partial A \subseteq \partial (A \cap \partial A)$ for all $A \subseteq E(1)$,
- (iii) $\partial A = \{x; x \text{ is in some pithy subset of } A \cup x\} \text{ for all } A \subseteq E.$
- (7) Every minor of a transitive space is transitive; likewise for dually transitive spaces and for matroids.

Proof. By virtue of the formulae $(\partial.S)^* = \partial^* \times S$ and $(\partial \times S)^* = \partial^*.S$, it is sufficient to show this for transitive spaces only, and in this case the result has essentially been given by Tarski ([6], Satz I.6), q.e.d.

The following two notions frequently occur in matroid theory. Let (E, ∂) be a space. Then (E, ∂) is said to be:

- (i) finitely transitive if $x \in \partial(A \cup y)$ and $y \in \partial A$ implies $x \in \partial A$; and
- (ii) exchange if $x \in \partial(A \cup y)$ implies $x \in \partial A$ or $y \in \partial(A \cup x)$

for all $A \subseteq E$ and distinct $x, y \in E \setminus A$.

It is easily verified that

- (8) (i) A transitive space is finitely transitive.
- (ii) A space is finitely transitive if and only if it is dually exchange.

Thus every dually transitive space, and in particular every matroid, is exchange.

3. B-matroids. Define the properties B_1 and B_2 of a space (E, ∂) as follows:

 B_1 : every discrete set is contained in a base;

 B_2 : if A is discrete, D is dense, and $A \subseteq D$, then there is a base B such that $A \subseteq B \subseteq D$.

Clearly B_2 implies B_1 , and B_1 implies that bases exist. We define a *B-matroid* to be a transitive space each of whose subspaces is B_1 . That *B*-matroids are indeed matroids is a consequence of (12) below. The following result shows that those matroids which have been mainly considered hitherto are *B*-matroids. A space (E, ∂) is said to be finitary if, for all $x \in E$ and $A \subseteq E$, $x \in \partial A$ implies $x \in \partial A_1$ for some finite subset A_1 of A.

(9) Every finitary transitive exchange space is a B-matroid.

Proof. Let S be a subset of such a space. It follows from the finitary property that every discrete subset of S is contained in a maximal discrete

⁽¹⁾ I am grateful to Dr. D. W. T. Bean for pointing out (ii) to me.

 $\bar{\partial}^2 X = \bar{\partial} X$, q.e.d.

subset of S; and from the exchange property that a maximal discrete subset of S is a base of S, q.e.d.

(10) A space is a B-matroid if and only if each of its subspaces is B_2 . Proof. Suppose that (E, ∂) is a B-matroid and let $S \subseteq E$. Let $A \subseteq D$ be such that A and D are respectively discrete and dense in S. Then, since D is B_1 , there is a base B of D such that $A \subseteq B$. From $D \subseteq \overline{\partial}B$ we have $S \subseteq \overline{\partial}D \subseteq \overline{\partial}^2B = \overline{\partial}B$ and thus B is a base of S. This shows that S is S_2 . Now suppose that (E, ∂) is a space in which each subspace is S_2 . We have to show that (E, ∂) is transitive. Let $S \subseteq E$ and let $S \subseteq E$ be a base of $S \subseteq E$. Clearly we must have $S \subseteq E \subseteq E$, so that $S \subseteq E \subseteq E$.

By the same argument, B is a base of $\bar{\partial}^2 X$, from which it follows that

- (11) Let (E, ∂) be a B-matroid and let $A \subseteq S \subseteq E$. Then
- (a) the following conditions are equivalent:
 - (i) A is dense in $(S, \partial \times S)$,
 - (ii) $A \cup B$ is dense in E for all bases B of $E \setminus S$,
 - (iii) $A \cup B$ is dense in E for some base B of $E \setminus S$;
- (b) the same equivalences hold with "dense" replaced by "discrete"; and
- (c) the same equivalences hold with "dense in" replaced by "a base of" (cf. [7], 3.53).

Proof. Since $E \setminus S$ has a base, (ii) trivially implies (iii) in each case.

- (a) Here (i) holds if and only if $S \subseteq A \cup \partial (A \cup (E \setminus S))$. Suppose that this is so and let B be a base of $E \setminus S$. Then $\overline{\partial}(A \cup B) = \overline{\partial}(A \cup (E \setminus S))$ by virtue of transitivity, from which it follows that $A \cup B$ is dense in E. This shows that (i) implies (ii). Now suppose that (iii) holds. Then $S = S \cap E = S \cap (A \cup B \cup \partial (A \cup B)) = A \cup (S \cap \partial (A \cup B)) \subseteq A \cup \partial (A \cup B)$ $\cup (E \setminus S)$. Hence (iii) implies (i), and (a) is proved.
- (b) This time (i) holds if and only if $A \cap \partial(A \cup (E \setminus S)) = \emptyset$. Suppose that this is so and let B be a base of $E \setminus S$. Then B is contained in some base C of $A \cup B$. Since $A \cap \partial(A \cup B) \subseteq A \cap \partial(A \cup (E \setminus S))$, we must have $C = A \cup B$. It follows that (i) implies (ii). Now suppose that (iii) holds and that $x \in A \cap \partial(A \cup (E \setminus S))$. Then $x \in \overline{\partial}((A \setminus x) \cup (E \setminus S)) = \overline{\partial}((A \setminus x) \cup B)$ by virtue of transitivity and therefore $x \in \partial(A \cup B)$, contrary to the discreteness of $A \cup B$. Hence $A \cap \partial(A \cup (E \setminus S)) = \emptyset$. This shows that (iii) implies (i), and (b) is proved.
 - (c) This is an immediate consequence of (a) and (b), q.e.d.
 - (12) The dual of a B-matroid is a B-matroid.

Proof. Let (E, ∂) be a B-matroid. By (10), the result will be obtained if we show that each subspace of (E, ∂^*) is B_2 . Let $A \subseteq D \subseteq S \subseteq E$ be

such that A and D are respectively discrete and dense in $(S, \partial^*.S)$. Then by (4), $S \setminus A$ and $S \setminus D$ are respectively dense and discrete in $(S, \partial \times S)$. Let X be a base of $E \setminus S$. By (11), $(S \setminus A) \cup X$ and $(S \setminus D) \cup X$ are respectively dense and discrete in E. Hence there exists a base Y of E such that $(S \setminus D) \cup X \subseteq Y \subseteq (S \setminus A) \cup X$. Now clearly $(Y \cap S) \cup X = Y$. Therefore by (11) again, $Y \cap S$ is a base of $(S, \partial \times S)$. We conclude from (4) that $B = S \setminus (Y \cap S)$ is a base of $(S, \partial^*.S)$. Since $A \subseteq B \subseteq D$, this proves the result, q.e.d.

(13) Every minor of a B-matroid is a B-matroid.

Proof. For subspaces this is immediate from (7) and the definition of a *B*-matroid. The result for arbitrary minors follows from this case by virtue of (12) and the formula $(\partial \times S)^* = \partial^* . S$, q.e.d.

4. C-matroids. A transitive space (E, ∂) is said to be *coatomic* if each closed subset of E is the intersection of maximal proper closed subsets of E, that is, if each open subset of E is the union of minimal non-empty open subsets of E. We define a C-matroid to be a matroid which is both coatomic and dually coatomic. Thus the dual of a C-matroid is a C-matroid.

We now relate the present notions to those of Minty [2]. If \mathscr{C} is any set of subsets of a set E, then there is a unique transitive space (E, ∂) on E whose open sets are the unions of members of \mathscr{C} — we say that \mathscr{C} open-generates (E, ∂) . The following result is an easy consequence of (2) and (5):

(14) Let $\mathscr{C}, \mathscr{D} \subseteq \mathscr{P}(E)$. Then \mathscr{C} and \mathscr{D} open-generate a matroid on E and its dual respectively if and only if (G-I-II): for all paintings (A, x, B) of E, exactly one of the following two possibilities holds: (i) there exists $C \in \mathscr{C}$ such that $x \in C \subseteq A \cup x$; (ii) there exists $D \in \mathscr{D}$ such that $x \in D \subseteq B \cup x$.

Condition (G-I-II) is equivalent to the conjunction of the conditions (G-I) and (G-II) of [2]. It follows that Minty's notion of a pregraphoid — with the finiteness condition removed — is equivalent to that of a general matroid in which sets $\mathscr C$ and $\mathscr D$ of non-empty open-generators for the matroid and its dual respectively have been distinguished. The next result is a direct consequence of (14).

(15) Let $\emptyset \notin \mathcal{C}$, $\mathscr{D} \subseteq \mathscr{P}(E)$. Then \mathscr{C} and \mathscr{D} consist of the minimal non-empty open sets of a C-matroid on E and its dual respectively if and only if (G-I-II) and (G-III): no member of \mathscr{C} contains another properly; no member of \mathscr{D} contains another properly.

Condition (G-III) here is the same as that of [2]. Thus Minty's notion of a graphoid — again with the finiteness condition removed — is equivalent to that of a C-matroid.

(16) Every B-matroid is a C-matroid.

Proof. Let (E, ∂) be a B-matroid. It is sufficient to prove that (E, ∂) is coatomic. Let A be a closed subset of E and let $x \in E \setminus A$. Let B be a base of A. Then $B \cup x$ is discrete, as may be seen using the fact that (E, ∂) is exchange. Hence E has a base of the form $B \cup x \cup C$, where $(B \cup x) \cap C = \emptyset$. Again using exchange, it may be verified that $\overline{\partial}(B \cup C)$ is a maximal proper closed subset of E which contains A but not x. The result follows, q.e.d.

I do not know whether the converse of this result is true, nor even whether every subspace of a C-matroid is a C-matroid (P 668).

REFERENCES

- [1] D. A. Higgs, Infinite graphs and matroids, to appear in Recent progress in combinatorics (Proceedings of the Third Waterloo Conference (1968)), New York.
- [2] G. J. Minty, On the axiomatic foundations of the theories of directed linear graphs, electrical networks and network-programming, Journal of Mathematics and Mechanics 15 (1966), p. 485-520.
- [3] R. Rado, Abstract linear dependence, Colloquium Mathematicum 14 (1966), p. 257-264.
- [4] J. Schmidt, Mehrstufige Austauschstrukturen, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 2 (1956), p. 233-249.
- [5] W. Sierpiński, Sur les espaces (V) de M. Fréchet dense en soi, Fundamenta Mathematicae 33 (1945), p. 174-176.
- [6] A. Tarski, Fundamentale Begriffe der Methodologie der deduktiven Wissenschaften I, Monatshefte für Mathematik 37 (1930), p. 361-404.
- [7] W. T. Tutte, Lectures on matroids, Journal Res. National Bureau Standards Section B 69 (1965), p. 1-47.
- [8] H. Whitney, On the abstract properties of linear dependence, American Journal of Mathematics 57 (1935), p. 509-533.

Reçu par la Rédaction le 16.5.1968