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Whitney defined duality for finite matroids in [8], and in [5] Sierpinski
described the same duality, but for the much more extensive class of
Fréchet (V)-spaces. In the present note* this duality is used to define
matroids which are not necessarily finite, nor even finitary. The resulting
definition is closely related (see Section 4) to Minty’s elegant self-dual
definitions [2] and provides a feasible starting-point for a solution to
Rado’s Problem P 531 [3], namely, to construct a theory of non-finitary
matroids. Within the class of all matroids, two subclasses are distinguished :
B-matroids (Section 3) and C-matroids (Section 4). B-matroids, especially,
have properties closely analogous to those of finite matroids. Some of the
results obtained here are used in characterizing those infinite graphs
which give rise to matroids [1].

1. Spaces in general. A space (E, 0) is a set E together with a func-
tion 0 from the set #(F) of subsets of F to itself such that

(i) A < B implies 0A ~ 0B, and

{ii) A = B implies B A v 0A or BAOBc A.

(A = B means that A is covered by B in #(E) ordered by inclusion.)

It is easily verified that an equivalent definition of a space is obtained
if we replace (ii) by the condition: xe¢0A implies zed(A\z). If (E, 9)
is a space, let A = A w 0A for all A < E; then 04 = {z; meb—(A\w)}
for all A = E. Schmidt [4] discusses various properties of spaces, par-
ticularly those relevant to matroids.

(1) If (E, ) is a space, then so is (E, d*), where 0*A = EN\0(E\A)
for all A< E.

This is evident from the form of conditions (i) and (ii) above. Clearly
0™ = 9. (E, 0*) is called the dual of (E, 0) and, for any property P of
spaces, (E, 0) is said to be dually P if and only if (E, 8*) is P. An alternative

* Written while the author held a Faculty Research Fellowship from the
University of Waterloo.
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description of duality is conveniently stated using the notion of a painting
[2]. A painting of a set E is a triple (4, z, B) where A and B are disjoint
subsets of F,z is in E\(4 v B), and 4 v v B = E. Then clearly

(2) The spaces (E, 0,) and (E, 0,) are duals of each other if and only
if, for all paintings (A, x, B) of E, exactly one of the following two possibil-
ities holds: (i) xed,A; (i) xed,B.

(3) If (E, 0) is a space and S < E, then (S,0.8) is a space, where
(0.8)A =8 ~04 for all A< 8.

This is straight forward. (S, 0.8) is called the subspace of (E, 0)
on 8. If (E, 0) is a space and S < E, we write 0 X 8 for (d*.8)* (so that
(0XS8)A =8~ d(A v (E\RS)) for all A = §) and refer to a space of the
form (7', (0.8)xT), where T = S < E, as a minor of (E, d). The notations
0.8, 0 x8 and the term “minor” are Tutte’s [7]. It may be verified
that the results 3.331 through 3.36 of [7] hold for arbitrary spaces.

Let A be a subset of a space (E, d). Then A is said to be: closed
(in (E,0)) if 04 < A; pithy if A < 04; dense if A w0A = E; discrete
if A~0A = O; a base if A is both dense and discrete; and open if E\NA
is closed. The following results are immediate.

(4) If (B, 0) i8 a space and A < E, then

(i) A is closed in (E, d) if and only if E\A is pithy in (E, d%);

(ii) A is dense in (E, 0) if and only if E\NA is discrete in (E,0%);
and

(i) 4 is a base of (E, d) if and only if ENA is a base of (B, 0*)
(cf. [5]).

Note. When a given space (K, d) is being discussed, we usually
omit explicit reference to it provided no ambiguity arises thereby. In
particular, we write § for (S, 0.8); and “closed” for “closed in (H, 0)”
etc. This last usage is especially appropriate for pithyness and discrete-
ness since these are intrinsic properties in the sense that A is pithy in
(E, 0) if and only if A is pithy in (4, 0.4) — likewise for discreteness.

2. Matroids in general. A space (®, d) is said to be transitive if 0
is idempotent (and hence a closure). We define a matroid to be a space
which is both transitive and dually transitive. Thus the dual of a matroid
is a matroid.

(5) Let (E, 0) be a space. Then the following conditions are equivalent:

(i) (&, 0) s transitive,

(ii) 0(A v 04A)<c A v 0A for all Ac E,

(iii) 04 = {x; every closed set containing ANz contains x} for all
AcE.

Proof. (i) and (ii) are clearly equivalent. Suppose that (i) holds and
let A = E. Then 0(AN\x) is the intersection of the closed sets containing
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ANz and since xedA if and only if zed(A\x), (iii) follows. Now suppose
that (iii) is given to hold and that ¢ A w 0A4. Then there is a closed set
C such that 4 = C, z¢C. But then 94 = C and hence d(4 v 04) = C,
so that x¢d(A v 04). It follows that (ii) holds, q.e.d.

On dualizing this result and applying (4), we obtain

(6) Let (E, 0) be a space. Then the following conditions are equivalent:
(i) (B, 0) is dually transitive,
(i) A ~n04A < 0(A ~ 04A) for all A < E (Y),
(ili) 04 = {x; = i8 in some pithy subset of A v x} for all A c K.
(7) Every minor of a transitive space is transitive; likewise for dually
transitive spaces and for matroids.

Proof. By virtue of the formulae (9.8)* = 0* x 8 and (0 x8)* = 0*.8,
it is sufficient to show this for transitive spaces only, and in this case
the result has essentially been given by Tarski ([6], Satz 1.6), q.e.d.

The following two notions frequently occur in matroid theory. Let
(&, 0) be a space. Then (E, d) is said to be:

(i) finitely transitive if xed(A v y) and yedA implies xedA; and

(ii) exchange if xed(A v y) implies xedA or yed(4A v o)
for all A = F and distinet z, ye E\ A.

It is easily verified that

(8) (i) A transitive space is finitely transitive.

(1) A space is finitely transitive if and only if it is dually exchange.

Thus every dually transitive space, and in particular every matroid,
is exchange.

3. B-matroids. Define the properties B, and B, of a space (E, d)
as follows:

B,: every discrete set is contained in a base;

B,: if A is discrete, D is dense, and A = D, then there is a base B
such that A < B< D.

Clearly B, implies B,, and B, implies that bases exist. We define
a B-matroid to be a transitive space each of whose subspaces is B,. That
B-matroids are indeed matroids is a consequence of (12) below. The
following result shows that those matroids which have been mainly
considered hitherto are B-matroids. A space (F,d) is said to be
finitary if, for all z¢E and A = E, x<0A implies z¢dA, for some finite
Subset A4, of A.

(9) Every finitary transitive exchange space is a B-matroid.

Proof. Let 8 be a subset of such a space. It follows from the finitary
property that every discrete subset of 8 is contained in a maximal discrete

(*) I am grateful to Dr. D. W. T. Bean for pointing out (ii) to me.
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subset of §; and from the exchange property that a maximal discrete
subset of § is a base of 8, q.e.d.

(10) A space is a B-matroid if and only if each of its subspaces is B,.

Proof. Suppose that (F, d) is a B-matroid and let S< F. Let A = D
be such that 4 and D are respectively discrete and dense in S. Then,
since D is Bl, there is a base B of D such that A = B. From D < 0B
we have 8 € 0D < 3*B = 0B and thus B is a base of 8. This shows that §
is B,. Now suppose that (E, 0) is a space in which each subspace is B,.
We have to show that (E, 0) is transitive. Let X < F and let B be a base
of X. X is dense in X and therefore there is a base B’ of 9X such that
B c B’ < X. Clearly we must have B’ = B, so that B is a base of 0X.
By the same argument, B is a base of 9°X, from which it follows that
X = 0X, q.e.d.

(11) Let (E, 0) be a B-matroid and let A< S < E. Then

(a) the following conditions are equivalent:

(i) A is dense in (8, 0x8),
(ii) A v B is dense in E for all bases B of E\S,
(iii) A v B 18 dense in E for some base B of E\S;

(b) the same equivalences hold with “dense” replaced by “discrete”;
and

(c) the same equivalences hold with “dense in” replaced by “a base of”
(cf. [7], 3.53).

Proof. Since E\§ has a base, (ii) trivially implies (iii) in each case.

(a) Here (i) holds if and only if Sc Auvd(4d v (E\S) Suppose
that this is so and let B be a base of E\§. Then 9(4 v B) = O(A v E\S))
by virtue of transitivity, from which it follows that A v B is dense in E.
This shows that (i) implies (ii). Now suppose that (iii) holds. Then
S=8~E=8~n (A v Bu a(AuB)) =Au(Sr\a(AuB))§ Aua(Au
v (EN\S8)). Hence (iii) implies (i), and (a) is proved.

(b) This time (i) holds if and only if 4 ~ 9(4 v (E\S)) = @. Suppose
that this is so and let B be a base of E\§. Then B is contained in some
base C of A v B. Since A ~ (A v B) < A~ d(A v (ENS)), we must
have C = A v B. It follows that (i) implies (ii). Now suppose that (iii)
holds and that zed ~ (4 o (E\S)). Then zed((A\z) o (E\S))
= 0((4\®&) v B) by virtue of transitivity and therefore zed(A v B),
contrary to the discreteness of A v B. Hence A ~ 0(4 v (E\S)) =0
This shows that (iii) implies (i), and (b) is proved.

(c) This is an immediate consequence of (a) and (b), q.e.d.

(12) The dual of a B-matroid is a B-matroid.

Proof. Let (E, 0) be a B-matroid. By (10), the result will be obtained
if we show that each subspace of (E, 0*) is B,. Let A< D< 8 < F be
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such that A4 and D are respectively discrete and dense in (8§, 0*.8).
Then by (4), S\ 4 and 8\ D are respectively dense and discrete in (S, d X 8).
Let X be a base of E\S. By (11), (8\4) v X and (S\ D) v X are respecti-
vely dense and discrete in . Hence there exists a base Y of F such that
(S\D)uo X< Yc (8\NA)u X. Now clearly (Y ~ 8) v X = Y. There-
fore by (11) again, Y ~ 8 is a base of (S, 9 X S). We conclude from (4)
that B = 8\(Y ~ 8) is a base of (§,0*.8). Since A = B < D, this
proves the result, q.e.d.

(13) Ewvery minor of a B-matroid is a B-mairoid.

Proof. For subspaces this is immediate from (7) and the definition
of a B-matroid. The result for arbitrary minors follows from this case
by virtue of (12) and the formula (0 x8)* = 90*.8, q.e.d.

4. C-matroids. A transitive space (E, d) is said to be coatomic if
each closed subset of EF is the intersection of maximal proper closed
subsets of F, that is, if each open subset of ¥ is the union of minimal
non-empty open subsets of E. We define a C-matroid to be a matroid
which is both coatomic and dually coatomic. Thus the dual of a C-matroid
is a C-matroid.

We now relate the present notions to those of Minty [2]. If € is
any set of subsets of a set E, then there is a unique transitive space (¥, 9)
on F whose open sets are the unions of members of ¢ — we say that ¢
open-generates (E, 0). The following result is an easy consequence of (2)
and (5): )

(14) Let ¢, 92 < #(E). Then € and 2 open-generate a matroid on E
and its dual respectively if and only if (G-I-II): for all paintings (A, xz, B)
of E, exactly one of the following two possibilities holds: (i) there exists
C €% such that xeC = A o x; (ii) there exists De2 such that xeD < B v x.

Condition (G-I-II) is equivalent to the conjunction of the conditions
(G-I) and (G-II) of [2]. It follows that Minty’s notion of a pregraphoid —
with the finiteness condition removed — is equivalent to that of a general
matroid in which sets € and 2 of non-empty open-generators for the
matroid and its dual respectively have been distinguished. The next
result is a direct consequence of (14).

(15) Let O ¢¥¢, D < P (E). Then € and 2 consist of the minimal non-
empty open sets of a C-matroid on E and its dual respectively if and only
if (G-I-II) and (G-III): no member of € contains another properly; no member
of 2 contains another properly.

Condition (G-III) here is the same as that of {2]. Thus Minty’s
notion of a graphoid — again with the finiteness condition removed — is
equivalent to that of a C-matroid.

(16) Every B-matroid is a C-matroid.
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Proof. Let (#,d) be a B-matroid. It is sufficient to prove that
(E, 0) is coatomic. Let A be a closed subset of F and let ze E\NA. Let B
be a base of A. Then B u z is discrete, as may be seen using the fact
that (E, d) is exchange. Hence E has a base of the form Buz v O,
where (B v z) ~ C = 6. Again using exchange, it may be verified that

d(B v C) is a maximal proper closed subset of £ which contains 4 but
not z. The result follows, q.e.d.

I do not know whether the converse of this result is true, nor even
whether every subspace of a C-matroid is a C-matroid (P 668).
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