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1. Introduction

The purpose of these lectures is to represent an elementary and short
introduction to some aspects of anisotropic Besov spaces B}, 6 and Bessel
potential spaces I? on the whole Euclidean space R". A unified treatment of
the isotropic as well as of the anisotropic case is made possible by replacing
the standard dilation matrix diag(t, ..., t) by a general one 4, =¥ := eP'¥,
where P is a real nxn-matrix with eigenvalues 4;, Re4; > 0, and, conse-
quently, by replacing the Euclidean distance by an A4,-homogeneous distance
function. This idea is basic in the work of Calderén and Torchinsky [6] on
parabolic maximal functions.

In the case of anisotropic function spaces with respect to diagonal
dilation groups we refer the reader to the book of Nikolskii [18] for an
extensive discussion and relevant literature. In this connection let us mention
that, when working with diagonal dilation matrices, one is lead to use the
special concrete coordinate system in the proofs (e.g. when differentiating)
whereas in the case of general dilations the methods must be independent of
a particular coordinate system.

The techniques used here are standard Fourier multiplier methods; this
implies that we restrict ourselves to the mostly occurring case 1 < p, ¢ < o©
and y > 0 (the latter restriction not being necessary, cf. [20]); but there is
little doubt that one can carry over the “maximal function” method in the
book of Triebel [29] to obtain the missing yeR, 0 < p, g < oo results. With
the books of Bergh and Lofstrém [1], Brenner, Thomée and Wahlbin [5],
Nikolskii [18], Peetre [19] and Triebel [29] in mind, the results displayed
here will cause a “deja vu” impression. Nevertheless, the simplicity of the
derivation and the generality of the results might a little surprise.

[69]
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Start with a real n x n-matrix P whose eigenvalues 4; have positive real
parts. Denote by v the trace of P and define

A, =minRek;, Ay, = maxRel;.
j j

Following Besov, I'in and Lizorkin [3] associate to the dilation matrix A,
=tP a positive, A,-homogeneous distance function r(x), i.e., a continuous
function r on R" with

(1.1) r(x)>0 for x#0; r(4,x)=tr(x) fort>0, xeR"

We mention that there always exists at least one A,-homogeneous C®(Rp)-
distance function, Ry = R"\|0}: eg. r*(x) = 1/t, where ¢t is the solution of

[ ]

BA,xA,x=1 for x#0 with B= [e e ""ds,

0

P’ being the adjoint of P (see Madych [16], Stein and Wainger [24]). In
concrete diagonal situations one can easily list up many distance functions
associated to one. 4,; e.g.

i [1 0 t0]
W P= 0 1]’ A‘=[0 t]’

rp(x) = (Ix4/°+|x[")"'?, p > 0.

3 2 o [z 07,
P Lo 1/41’ A“[o zl/‘*]’

(%112 +1x,12P)2?, p > 0, x}—c|x;| x3+x3 for ¢ <2,

2 /xt+x5—x2, etc. are admissible choices for A,-homogeneous
distance functions.

11 - |t tlogt |
o e[}l

in this case, an explicit representation of some r(x) seems to be
complicated to derive. _
We list up some properties of such distance functions:

(1.2) r(x+y) <C(r(x)+r@), C=1;
(1.3) : r(sx) <Cr(x), |Is|<1, seR;
(1.4) r(x) xr*(x), xeR",

re.. there exist positive constants c,, ¢, such that

¢ r(x) <r*(x) < cyr(x),
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where r* is the distance function constructed below (1.1). In particular (1.4)
implies that all distance functions, homogeneous with respect to one fixed
dilation A,, are comparable. Concerning derivatives we have: to each ¢ > 0
(e < A,) and a € Ng there exist constants C,,, C,, > 0 with (r is assumed to
be sufficiently smooth)

|D*r ()|
|D*r (x)|

(15) < o) MY, M <1,
' < Clor(®' ™m0 x> 1.

Also the following comparison with the Euclidean distance holds (0 <¢
<A

C. %" <r(x) < CIx|""™™®,  |x| >0,
(1.6)
<

<
1 /(A=
C™M™ < r(9) < Cl ™%, x>0

Now define the Fourier transformation on the space S of infinitely differen-
tiable, rapidly decreasing functions on R" by

FUAO =1 © = [ f(xe ®dx;
Rn

denote by .#~! its inverse and extend these definitions to the space S’ of
tempered distributions. Concerning dilations there holds

(1.7 [ (4,91 () =f (A1, 0,

where 4, =¥ is the adjoint of 4,. Let ¢ be an A;-homogeneous distance
function and ¢* be constructed analogously to r*. It is clear that g, o* satisfy
properties (1.2)(1.6). For proofs see [2], [3], [24], [7].

The Besov spaces we want to discuss are now defined as follows: Let
0< PeC™®(R) be a non-negative bump function with

supp® <=[4,2], Y #Q27*n=1 fort>0.
- @

Set
o =Po(2 %) =d027*%g, keZ,

where ¢ is an A;-homogeneous distance function with ¢ e C"™ (R%), n* = [n/2]
+1, and define

a
(18) Ifllse, =( L [270F ' [ods 1,19, 720
k= — a0
(with the usual modification for g = o0 ; we do not indicate a dependence on
¢ and ¢, since it will turn out (see Theorem 3) that for different g’s and ¢'s
all semi-norms ”'”ﬁf,’,, are equivalent); the anisotropic Besov spaces to be
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discussed are now given by
(19) Bl ={f el IIfllsz, = IIfll,+IIfllgz, < oo}

(for the case of diagonal dilations see e.g. [29], p. 270). BY , coincides with the
classical isotropic Besov space (cf. [S], Ch. 2) when A4, = diag(t, ..., 1), (&)
= |£]. Also we will consider the following anisotropic Bessel potential spaces

(110) LB, ={f: f=F '[1+0 ")sg, gel¥}, 720,1<p< oo,
which we norm by

(1.11) WS 115y = llgll,-

For A, =diag(t'/?, ..., t'?), o(&) = |€)% the latter spaces coincide with the
classical Bessel potential spaces of order 2y (cf. [23], p. 134) and with the
Triebel-Lizorkin spaces F’,, 1 <p <o (cf. [29], p. 146). In the case of
diagonal dilations anisotropic Bessel potential kernels and spaces have been
discussed by Lizorkin [14], [15], Sadosky and Cotlar [21], Torchinsky [28]
and others (clearly, anisotropic F} ,-spaces can be introduced by replacing |{|
by 0(¢), cf. [29], p. 270). Since, contrary to the classical situation, one cannot
expect explicit representations or asymptotic estimates of F~'[(1+0)” "]
without much work, we will try to work only with the Fourier transform
(14+¢(&)7". To this end, in Section 2 we list up some Fourier multiplier
criteria and use them for a first discussion of the Bessel potential spaces
(1.10); Section 3 deals with the Besov spaces (1.9) and in Section 4 we revisit
the Bessel potential spaces to clarify questions on multiplication algebras and
pointwise multipliers.

2. Some Fourier multiplier criteria

In the following let o, g1, 0%, ...€C™(RY), n* =[n/2]+1, always be A-
homogeneous distance functions. We start with a variant of the Bernstein
Lemma.

TueoreM A (Madych [16]). Let the sufficiently smooth and vanishing at
infinity m be such that

@©

Y sup

=—w 1€)€ (
k aoo‘a.;‘:. 1/2€09 <2

0 aj 2 1/2
(’a?,) m(A %) d:) < B <.

Then me[L* (R"Y, i.e, m is the Fourier transform of an integrable function
and

|#~* [m]ll, < CB.
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As an application one has (use (1.5))
(2.1) (1+e)’(1+0) 77 e[L']

01, ¢ being homogeneous with respect to the same A;.

In the case that m is quasi-radial, i.e, m = myo0p, my: R, = C (e.g. the
Fourier transform of the anisotropic Bessel potential kernel: (1+¢)~" or ¢,
= ¢ 027 %) the following version of the quasi-convexity criterion turns out
to be quite useful.

TueoreM B (Dappa and Trebels [8]). Let my: R, — C be sufficiently
smooth and vanishing at infinity. Then (v being the trace of P)

-~
?

0<46 <y,

a
NF~[mooelll, <C [t |dmf (1)), 1<p< o,
0 -~

provided that the right hand side is finite; here 1/p+1/p’ = 1.

In [8], the proof is only given for diagonal dilations; but it immediately
carries over to the general situation considered here.
We mention two applications of Theorem B.

. 1
2.2) 1+~ * e[, y>v0-?) 1€g<w,

which for ¢ =1 in particular shows that the definition (1.10) makes sense.

((1 +¢)'

23
(23) 1+

, :
) eM for 6 >0, yeR;

i.e. this function is the Fourier transform of a bounded measure. To realize
that (2.3) is true we only need to observe that

mo (8) = (1 +HY3/(1 + 1)) —1

satisfies the hypotheses of Theorem B and that 1 is the Fourier transform of
the bounded Dirac measure supported at the origin. In particular, if we

choose § = y and then & = —y we obtain the anisotropic analogon of Stein’s
Lemma ([23], p. 133):
24 ¢’ =(1+0[do,]", |[ldo,| <o,
r
(2.5) (1+of =(1+0)[dw,]", | ldw,| < cc.
R

Up to a one time use of the Wiener—Levy theorem, Theorems A and B turn
out to be sufficient for our discussion of anisotropic Besov spaces, where we
will only use the convolution theorems ([23], p. 27, [25], p. 31)



74 H. DAPPA AND W. TREBELS

(2.6) S *dpll, < lullallfllp, 1< p< oo,
1
2.7 IS *glly < ligl WS Mpy  O0<-—= l_7+__ l,p21.

For the treatment of the Bessel potential spaces we also need a multiplier
criterion of H&rmander-type and one on fractional integration.

Tueorem C (Madych [16]). Suppose m is sufficiently smooth and

o \Y 2 1/2
lmll+ sup (sup (—) m(A; ) dé) < B.
1€j€n \t>0 1/2€0()€2 6{1
0(11611‘
Then
(2.8) |# [m]*fll,<CBIlfll,, feS,1<p<oo.

If an inequality of type (2.8) holds we call m a multiplier of type (p, p):
meM}. As an application of Theorem C we have

Y
2.9) (Q%) eM?, 1<p<w, yeR,

since (g/g0*)" is homogeneous of degree zero ‘it is not hard to verify the
assumptions of Theorem C to hold.

TheoreM D (Calder6én and Torchinsky [6]). For 1 <p <00, 0 < pu <v/p
and 1/q = 1/p— u/v there holds

I# e~ f W, < Clifll,, feS.

The assertion is proved for o* in [6]; the general case now follows from
this by (2.9) since

1F o™ Tl = ”f [( )]*f s |

\As an application we have that ¢~ in Theorem D can be replaced by
(14+9)7*, since by (24) we have

(210 ||f"[(1+e)-"f‘1u.,=||ﬁ"[(li )] +F ' lo

<SCIF ' e Wy < C NSl

With the aid of the above applications we can briefly give a first
discussion of the above Bessel potential spaces.

< CliAfllp-

THEOREM 1. Let y > 0 and v be the trace of P. Then
(@) If,, 1 < p< oo, is a non trivial Banach space;
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(b) I5,< L5, 0<6 <y, 1 <p< o, in the sense of continuous embed-
ding;

(© L, =L’;/N N 1<p< oo, N>O0, with equivalent norms; thus, on
account of (1.6), ¢ may be assumed to be sufficiently smooth at the origin;

(d) Ly, =L%,, 1 <p<oo; ie, the anisotropic Bessel potential spaces
depend only on A, if 1 <p <oo; in this case we omit ¢ and write L7;

. 1 1
© ) L, <Iy,, 1<p<q< o, y= >v(’—)—a);

. . 1
(i) <L}, 1 <p<qg<oo, y—06 2 ve_a),

Proof. (a) By the convolution theorem and (2.2) for ¢ =1 we see that
f=F '[(1+0) "]*g, geL,

is well defined and belongs to L?. Since L” is a Banach space, the same is true
for I8, by the definition of its norm (1.11).
(b) is again a consequence of the convolution theorem and (2.2) since

F (140 M *g=F '[(1+0 1*F '[(1+0° ]*g
implies
Wl = I1F 1 [(1+0)° "1 *4ll, < Cligll, = CIlf .-

(c) follows directly from (2.3).

(d) is proved by (2.9).

(e) (i) is established by (2.1) when q = p and by a combination of (2.1)
and (2.2) if ¢ > p; (i) is contained in a combination of (2.10), part (b) and
part (c) of the theorem.

One may ask after a relation between the above Bessel potential spaces
and the classical Sobolev spaces
0 )"
— 1 fll < oo}.
(axj P

THeOREM 2. (a) For all p, 1 < p < o, there holds
0) L, cWe, k <y,
(ii) Wpelt, |I>y/A,.

7@

Wy = {feu': 1Sl = IIfII,,+J§”:1

(b) If P is diagonal, 1 < p < o, and a; = y/A;€N, then one can identify
L% with the anisotropic Sobolev_space
< oo}.
14

n 0 ajy
{f- ||f|l,,+j§1 (;ﬂ;) f
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Proof. (b) is shown in [8]. Concerning (a), an application of Theorem A
(use (1.5) and (1.6)) yields (i&)*(1+¢) " €[L'] for k <y/Ap and

I+ (1 +iE + ... +iE)~re[I}]” for I > y/A,.
But then it follows by the convolution theorem that, eg.,

(&)

J/

= ||F 1 [@)* 1+ "I +gll, < Cligll, = Cllfll,.,-

p

Analogously (ii) is proved and thus also (a) is established.

3. Anisotropic Besov spaces

Before studying the embedding behavior of these spaces, let us first character-
ize them. We follow here notes of A. Seeger on unpublished work of Riviére
[20], [17] which itself is based on ideas of Shapiro [22] (see also Boman and
Shapiro [4]). For the sake of completeness and for the convenience of the
reader also Riviére’s proofs are given.

THE?REM E (Riviére [20]). Let feBj,, >0, 1<p,q<oo. Let
(ny) =M , ie, a family of Fourier transforms of bounded measures, with the
map y —n, * f being continuous in y on I’ and

supl|# ' [nllmy < B, supllF '[e”“ndllu<B -for p>y.
y y
Then we have with the notation &, f (&)= f “(A; &) that
© de\!/e
(I [t~ supl|# ' [5;n,] *fll,]“T) <CB|lfllgz,, g <o,
0 y

and
sup[t™"sup||# " [5in,] » fll,] < CBIIfllse .

t>0 y

Proof. Set #~'[¢]*f = fi. By assumption there holds
%~ [8;n,] * fll, < BIAI,

and, observing that ¢, = (@x—; + @+ Op+ ) @4,
NF =1 [orny]* fill,
=[F " [6(ny0™ ")) * F~ [t (Px- 1+ O+ Gucs )] * fill,
<BIF 27" 0 (9r- 1 + Ou+ 0 )] * fill, (2%
< CB(2*tP* |l
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since, by Theorem B,

IF IR * o (a1 + o+ 0us )l = O(1).
Now

-

sup|# ™ [om*fll, < X supllF " [5in,]1* Al
y

k=-wo ¥
and therefore, since the sup’s are measurable by hypothesis (observe that for
p = oo the Besov space B, contains orly continuous functions, cf. (3.4)),
1/q

(? [t~ sup|# 7 [&1,] *fn,,]"?)
0 y

® zl'+l ©

dt\'e
< CB( X X min{l,(2"t)“}llﬁllp]"7)

i=—-o i k= — a0
< CB( Z [ Z min {z—v(t.ﬂ), 2(;4-7)(i+k)} 2kv"fk”p]q)1/q
i=—o® k=-®
< CBIflisz,
by the convolution theorem for sequences ([13], p. 123), since
(min {277, 20-VkY) )1 (Z),

LemMma F (Riviére [20]). Let n e C(RY) satisfy a Tauberian condition (i.e.,
given £ €Ry, there exists a t > 0 such that n(A;&) #0), and let K < R} be
compact. Then there exist y; €C*(R™ with compact support, positive numbers
>0 |g=1i=1,..., m(K) < oo, such that

FO =Y an4,dn@#0 on K.

i=1

Proof. Given £ €K choose t(&), ¢(&) such that
Re[c(@)n(A@d] >0 in E+U,

Consider the covering {{+4U,: ¢ eK). Since K is compact we can choose a
finite subcovering {&+3U;}. Set ¢;=c(&), a;=t(&); x =1 on &+3U;,
suppy; € &4+ U; (x; 2 0 as in the hypotheses) and the lemma follows.

Theorem E has now the following converse.

Tueorem G (Riviére [20]). Let neM’ satisfy a Tauberian condition (w.r.t.
A). Then

© dt\'/e
IIflIn;"q < C(J' [t~ #! [5§rl]*fl|p]"7> sy g<o0
0

and the usual modification for q = oo also holds.
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Proof. Let @ be as in the definition of ll-ll,;;q and set

suppPop =K.

Choose F as in Lemma F, then

T [271F [0 * 1]

k= — o®
® o 2
b E [N

=-wo
2-k+2

I/l = (
]q)llq
> [Mf—' [odll:

- [@ote)z]
2-k-2 F(A:) ]Il

~  dt]a\l/a
XI|F 7 OF (4;7) f ]u,,{]) .

=-w

But
LZ~ Lol = IF~ [®oelll, = 0(1)

by Theorem B and

P 2
=S| = 1ot wooorFm, = o

by the Wiener-Levy theorem. Hence
® 27k+2 dt e\
WS llsz, < C _Z [2"y _I 2__21 NF " (8 x: I NF (8] = S Nl,— ])
k+2

2- k+2 2= 1/a'\ 1

dt dt 19’ \1/q

CZ Y 2 § NF 8] * SN~ ( f —) )
2-k-2 -k-21

=-

by the triangle and the Holder inequality. Thus, finally,

m d 1/q
Ifllsg, <€ % ( [ 17 (8] S11,]° t’)

de\/e
c(Turns e g)"
0

We are now ready to give the announced characterizations of || ”35’.,' With
the notation
4, f(x) = f(x+y)—f(x), 4y =4,4771,
ar=4,4r"1,

4, f(x) = f(x+3y)—f(x—1y),

we have
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THEOREM 3. Let ni=m > y/A,, m be even; let reC'(R%) be an A,-
homogeneous distance function. For 1 < p,q< o and y>0 we have the
Jollowing characterizations

0 o dt\'/e
(3.1) £ 1ts,, = 1fllsy = (5 Ll A?fdyllp]"T)
0 r(y) <t
M fllay = (f rG) 77 145 £11,10r )~ )
R
© L dt )\
* |flle = ( {[r77 sup nA;"fup]q_T) :
0 r(y) St

In particular, these characterizations show that the definition of B}, depends
only on P and does not depend on the choice of particular ¢ and .

Proof. Consider
n= ‘ (ei<y/2 _e-itylz)ﬁ dy.
riy) <1

Then

m
m . . -~
=" (.)(-1)‘ [ eem-2mzgyep”,

i=0 '} <1
since each single term of the sum is the Fourier transform of a bounded
measure. Furthermore, since m is even, the Tauberian condition is satisfied
and

n=t"" j (€92 —emi2ym gy

r(y) St

Thus

Fonlsf=t"" [ 47 fdy
ry) <t

and Theorem G gives

Crimyllimy ¢ & dr\'/e
11 1lez,, < C( [l 45 fdyll,,]"—) = Cllf -

4 0 ) <t t
Trivially, by the Minkowski inequalities and the translation invariance of the
norm,

© X dt \'/1
A, < C ( frorefemr | IIA'y"fllde’]"—t-)
0 t

ny) €

® X X ,dt\'
SC(.\’_”_" V47 flidy(e™ § dyple —)

0 ry) <t ny) <t r

=C({ 4y fUg {17797 " dt)' " = Cli fll 2.
R ry)



80 H. DAPPA AND W. TREBELS

Introducing now polar coordinates: y = A4,y y'eZ, = {h: r(h) =1} and dw
being a smooth measure on Z,, we obtain

Ifllzy = C(ft™"7" [ 1A%y Sl deo (y) 2"~ " dr)'/e
0 5

© dt\1/4
<c ({7 sop a1, %) =l
0

r(y) St _t—
Since €% eM  for all aeR", we have
(&) =@V —-)"eM".

Furthermore, Theorem A shows that g; =Q—“ﬂyE[L1]A for each yeR",

m > u/A, > y/A,, and in particular that sup |lg,ll; < B. But then Theorem
ry)<1

E may be applied to give
© dt\'/4
IS lla) = (f [t™7 sup IIAZ',zfllp]"—) <Cliflige .
0 n2)<1 t "4
If one introduces the semi-group of operators P(t), defined by
P)f=F '[e']xf, felf
(by Theorem B there holds ||# ![e ?]|l, < C), one obtains the further

equivalence
dt \'/e
]‘_)  m>.
o]t

@
(3.2 Ifllse, = ( f [t"'“’
0
For the proof consider n = g"e™? which is Tauber\ian; an application of
Theorem B also gives
Il.#~ nl, <B, IF '[e™nllh<B

so that the assertion (3.2) follows from Theorems E and G. If 4, is isotropic
and g(&) = |€| or g(§) = |¢|% then (3.2) just represents the characterizations
via Cauchy-Poisson and Gauss—Weierstrass semigroups, resp. (cf. [29], p.
184). Let us mention that, if P is diagonal, one can deduce essentially by the
same methods (cf. [8)):

Set 0 <y/i; =T;, choose a eNj such that 0 <TI';—a; =6; < 1; define

J?

4;S) f(x) = f (X1, ey X8, ooy X) =S (X1, .05 X,

4% (s) = 4;(s) 4;(5).
4 Jt \1/4
%)

TP S

atm

Then
i
o

4GS —f

Is} <t

i1, = % (7] sup
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After these clarifications let us briefly touch on the embedding properties of
the Besov spaces and their relation to the Bessel potential spaces. Proofs of
results we do not give can directly be carried over from Chapter 2 of
Brenner, Thomée and Wahlibin [5].

B, is a Banach space under the norm ”'”"51: given ih (1.9). If one
defines

Yr=¢, for keN and yo=1-3 o,
k=1

one has as another equivalent norm

(.3 ag, = (Z (27157 L]« 1,19
Concerning embedding results we have

(34 By B, fl<p<oc and(i)y>3,1<q,q <7
or (i) y=7, and 1 <q ~ ¢, < x.

11
(3.5 B, < By, v—v1=V(;—;)—), P<p <, 1<g< o,
1

since, by Young’s inequality (2.7) and the identity
YU =Wk-1+ ¥ +¥e+ ) ¥ (Where y_, =0),

it follows that
k+1

IF ' Wdfll,, < X IF T IAINE Wl = 11,
I=k-1
But Theorem B gives
IF "Wl S C2Y" = 2% for -1 <k <I+1.
Since y, +v/r' =y one arrives at (3.5):
1A ls?! < CIl SN,
(3.6) BycI),cB?,, 1<p<o.

We show only the right-hand side embedding, since the other follows along
the same lines. Thus start with f = #F ' [(1+¢g) "]*ge€L’,; then, for keN,

gl e Y. z-1ry -
F [(—-—-HQ)].-.% (Yro ]‘9,
SC2V|IF ' [Ywo " *4ll, < Cligll, = C'lifl,.,

uniformly in k. Here we used (2.4) for the first inequality and Theorem B for
the second.

2N F W]« Sll, = 2

6 — Banach Center t. 22
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A combination of (3.6) with the characterization (3.1) yields

(3.7 supr(y) 77147 fll, < CllSfllpy M > 7/ Am,
y

and a further combination with (3.5) for p;, = 0 leads to
(3.8) supr (WP |47 fllo < Clf -
y

It should be mentioned that one can show as in Bergh and Lofstrom ([1],
p. 152) the following strengthening of (3.6):

B?,cIZcB?,, 1<p<2,

Bl,clk <BF, 2<p<oo.

(Here one may use anisotropic Littlewood—Paley theory [16] and [8]
JsBP =B, s, Jsf=F '[(1+0 ]S,

which is valid for 1 < p,g< 0, 7,7+620)

As in [5] a combination of Theorem 2 (a) with (3.6) gives that the C™-
functions with compact support or whose Fourier transforms have compact
support are dense in B?,, y>0, 1 < p, g < . Also as in [5] one can verify
the following Sobolev-type embedding result

(3.9) By, ,cL* 1<p<=.
We conclude this section with a partial result for the problem, when the

Besov spaces form multiplication algebras (for the isotropic case see e.g. [29],
‘p. 1495).

CoroLLARY 4. If B, < L%, then f, g €B}, implies fg€BY, and
1 fgllaz, < Cllfl2, llglae .

Proof. By Leibniz’ formula

8090 =% (7

i=o \i

)A;'-"f(x)Ai,g(x+(m—i)y)

it follows from the characterization (3.1) (with even m so large that
max {m—i, i} > 2y/A,,) that

1<ism

d l/q
Ifallez, < € {Ilfllw ligll, + ( [ )7l am( fg)”p]qr(yv) }
' R y)

- m/2 . dy /e
< c{ufnng_,,ngungﬁ >l ( J Oy I45= A1l (y)')
i=0

e r
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£ 3 Wl ([0 Ise(+ - T )l}
[ |

i=m/2+1 r(y”

<
< ClIfloz liglse

where we again used (3.1) and the hypotheses ||‘|| < C||-||ng.

‘4. Bessel potentials revisited in case 1 < p < ©

Here we want to characterize the set of pointwise multipliers on Lf:
ML = {geL®: |\gll up, =inf{C: llgfll,, < CIlfll,, for all fel?} < o}
and to discuss the question when L7 forms a multiplication algebra:
LrIs L.

Our starting point is the following characterization of I via hypersingular
integrals.

THeoreM H (Dappa and Trebels [9]). Let m be an even integer larger
than y/A,,. On L5, 1 <p < oo, the following norms are equivalent

1Ay = AN +sup|l | r()™77 47 fdy,

Ce>0 pny)ze

Ml +supll [ r)77 47 fdy,.

£>0 e<r(y <1

A first sufficient condition for g €.#L% (for the corresponding isotropic
result see [29], p. 143) is contained in

LemMMA 5. For x€By ,, ¥ >y >0, there holds
S lp.r < Clixlls o 1115,y

Proof. By the above characterization it is sufficient to show that

Ixfllp+1: < Clidls 2 o NS Nlp.ys L=| [ r»7430)dy,
. I3 1

sr(y) €

uniformly in & > 0. First
4.1 M < Ml ANl < Cllxlle 1A 1,y

Now apply Leibniz’ formula

Aran) ) = Y (")Ap £ (x—iy) B g (x+(m=i)y),
i=0 !
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where we choose the even integer m larger than 27/A4,, to obtain

I.<Cllx V r i rarfay,
I3 1

+ 0 rMTTAT SNl G+ my) = Nl dy

riy <1t
mf2 ) )
+2 b r TN SNy Kl dy
i=stnysli
m-1 ) )
+ 2 L™ 7T 1A7 ™ Sl 114y 2l dy

i=1+m2ry<1
+ 0 rTTNAY A NS G =my) = £l dy
LU
-— 6 .
+Hf f oro)TT Ay} = X L
e<r(m <1 i=1

By Theorem H it is clear that
I; < Clldll 1 Wy, < Cllxlls o 1AMy
by hypotheses
E<CIAl, | r)7 7 ro sz  dy

ry) <1

< Cliglla , 1M

By (3.7) and the hypotheses on yx, the same estimate holds for I2 and I} (one
may use polar coordinates). Concerning I} and I] we at least have

Wag=" fll, < Cryy™ =" |l fll.
4% 7l . < Criy)” lxlls2 -
thus the desired estimate also for these terms and Lemma 5 is established.
This proof even shows more, namely (for the isotropic case see [29], p. 146).

CoroLLARY 6. | fgll,., < Clifll,.; lgll,y, ¥ > v/p, v being the trace of P.

s replaced by |lgll,.. Form now terms analogous to I}, ..., I} with g
replaced by ¢ and use (3.8) to obtain the desired estimates. The remaining
terms analogous to I, ..., I® are symmetric to the first three terms, thus
interchange the roles of f and g and all is proved.

In particular, Corollary 6 implies

4.2) b c./lsy, y>v/p.
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We mention that the proof of Corollary 6 is quite different from Strichartz’
[26] deduction of the isotropic case. With the aid of Theorem H one can
also prove (along the lines of Lemma 5) the following

UNiForM LocaLizaTiON THEOREM [11]. The following norms are equiv-
alent on L,

W, (X Wl )", v >0,
ac z"
where n,(x) = n(x+a), eC*R", 0<n<l,n=10nQ="x:|x/<1! and
suppn < 20. '
A combination of that theorem with (4.2) leads us to the anisotropic
analog of Strichartz’ [26] classical result on pointwise multipliers.

CoroLLARY 7. Let y > v/p. Then ge.#L, if and only if
(4.3) supllgnall,,, = K < =
ae Z"
(i.e., g belongs uniform locally to L). K gives an equivalent norm on /L%,

Proof. Let ge.«L: clearly nelf and ||n,ll,. = |Inll,, = C. Thus, by
hypothesis,

”.‘/’11“’),7 s ”g”.rll.p,y Hna”p,y S C"g”.ll.p.-,r

uniformly in a; ic, K < Cligll 4,.,-
Conversely, assume (4.3) to be true. Observe that n? satislies the same
conditions as n; then, by the Uniform Localization Theorem and (4.2),

lgfllp., < C(L Nlafudlly)''?

aczZh
SCK(Z Mandllp )" < C KISl
acZ"
and the corollary is proved.

Let us conclude with a further characterization of the L2-spaces which
reads [10]:

, 1>0,
4

[- <] 1/2
(I [t 14%, 1] dy]’?)
0

ry) <1

@4 Sl =S+

where m is even and larger than y/4,,. An immediate consequence of (4.4)
(via the Leibniz formula) is that [ = L® implies L2 I} < L.

All results of this paper can also be obtained for anisotropic Triebel
Lizorkin spaces by appropriate modifications of the methods in Triebel's
book [29]: see also [12] and [26]. In [29], p. 270, it is indicated how to
deline these in the case of diagonal dilations. As already mentioned at the
beginning, a substitution of the Euclidean distance || by an A,-homogeneous
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distance function g (&) seems to be the natural definition to start with in the
general situation. One may characterize these spaces by analogs of (4.4) and
[29], p. 108 (16), which allow easy access to results on pointwise multipliers
and multiplication algebras via the Leibniz formula; for characterizations in
the case p>0, 0 <g< oo see the contribution of A. Seeger in these
Proceedings. "

Concluding let us point out that the approach to the above result
(Theorem 1 to Corollary 7) is quite simple: only elementary Fourier multi-
plier techniques are used in the simultaneous discussion of isotropic and
anisotropic function spaces.
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