FASC. 1

ON CHARACTERIZATION OF NON-LINEAR BEST CHEBYSHEV APPROXIMATIONS

BY

RYSZARD SMARZEWSKI (LUBLIN)

1. Introduction. Let $C_b(X)$ be the space of real-valued continuous and bounded functions defined on the topological space X with the norm

$$||f|| = \sup\{|f(x)|: x \in X\}.$$

For any $f \in C_b(X)$ and $a \ge 0$ define the following closed set:

$$M_f(a) = \{x \in X \colon |f(x)| \geqslant a\}.$$

If a = ||f||, then we denote this set by M_f .

Let G be a non-empty subset of $C_b(X)$. We say that an element $g \in G$ is a best approximation to $f \in C_b(X)$ in G if $||f-g|| \leq ||f-h||$ for all $h \in G$. Kammler, assuming additionally that X is an interval of the real axis and G is a linear family, has formulated in [3] necessary and sufficient conditions for g to be a best approximation to f.

In this paper we obtain a Kolmogorov type characterization of a best approximation if G is a non-linear family and X is a topological space.

2. Main results.

Definition 1. A subset G of $C_b(X)$ has the weak betweenness property if for any two distinct elements g and h in G and for every non-empty closed subset D of X such that

$$\inf\{|h(x)-g(x)|: x \in D\} > 0$$

there exists a sequence $\{g_i\}$ of elements of G such that

$$\lim_{i\to\infty}\|g-g_i\|=0,$$

(ii)
$$\inf\{[h(x)-g_i(x)][g_i(x)-g(x)]: x \in D\} > 0$$
 for all integers i .

We note that if D is a compact set, then inequality (ii) is equivalent to the fact that $g_i(x)$ lies strictly between g(x) and h(x) for all $x \in D$ (i.e.

either $g(x) < g_i(x) < h(x)$ or $h(x) < g_i(x) < g(x)$). Therefore, if X = [a, b], then Definition 1 is equivalent to Definition 1 from [7].

Example 1. Let P be a convex subset of $C_b(X)$ and let λ_i be a sequence of real numbers from the interval (0, 1) convergent to zero. It is easy to see that the sequence defined by

$$g_i = \lambda_i h + (1 - \lambda_i) g, \quad i = 1, 2, \ldots,$$

satisfies (i) and (ii) in Definition 1. Indeed, we have

$$\lim_{i\to\infty} \|g-g_i\| = \|g-h\| \lim_{i\to\infty} \lambda_i = 0.$$

Additionally, if $\inf\{|h(x)-g(x)|: x \in D\} > 0$, then we obtain

$$\inf \{ [h(x) - g_i(x)] [g_i(x) - g(x)] \colon x \in D \}$$

$$= \lambda_i (1 - \lambda_i) \inf \{ [h(x) - g(x)]^2 \colon x \in D \} > 0.$$

Hence P has the weak betweenness property.

Example 2. Let P and Q denote convex subsets of $C_b(X)$ and let λ_i be such as in Example 1. Assume that $\inf\{q(x): x \in X\} > 0$ for an arbitrary $q \in Q$. Let us set

$$R = \{r = p/q: p \in P \text{ and } q \in Q\}.$$

Now, let h = p/q and g = s/t be two distinct elements from R. Define the sequence g_i by

$$g_i = \frac{\lambda_i p + (1 - \lambda_i) s}{\lambda_i q + (1 - \lambda_i) t}.$$

Since ||t|| > 0, we have

$$\lim_{t\to\infty}\|g-g_i\|\leqslant \frac{\|sq-tp\|}{\|t\|^2}\lim_{t\to\infty}\lambda_i=0.$$

Additionally, if

$$\inf\left\{\frac{p(x)t(x)-q(x)s(x)}{q(x)t(x)}:\ x\in D\right\}>0,$$

then in view of $\lambda_i q + (1 - \lambda_i)t \in Q$ we obtain

$$\begin{split} \inf \{ [h(x) - g_i(x)] [g_i(x) - g(x)] \colon & x \in D \} \\ &= \lambda_i (1 - \lambda_i) \inf \left\{ \frac{[p(x)t(x) - q(x)s(x)]^2}{g(x)t(x)[\lambda_i g(x) + (1 - \lambda_i)t(x)]^2} \colon x \in D \right\} > 0 \,. \end{split}$$

Hence R has a weak betweenness property.

For X = [a, b], other examples of subsets having a weak betweenness property have been given in [7].

THEOREM 1 (characterization theorem of Kolmogorov type). If a subset G of $C_b(X)$ has the weak betweenness property, then g is a best approximation to $f \in C_b(X)$ if and only if there exist no element $h \in G$ and no positive number $\varepsilon_0 < ||f-g||$ such that

(1)
$$\inf\{[f(x)-g(x)][h(x)-g(x)]: x \in M_{f-g}(\|f-g\|-\varepsilon)\} > 0$$
 for all $0 < \varepsilon < \varepsilon_0$.

Proof. Necessity. Let us suppose on the contrary that there exist an ε_0 , $0 < \varepsilon_0 < \|f - g\|$, and $h \in G$ such that (1) holds. Additionally, let us set $U = M_{f-g}(\|f - g\| - \varepsilon_0)$.

Since

$$\inf\{|h(x)-g(x)|: \ x \in U\} \geqslant \frac{1}{\|f-g\|}\inf\{[f(x)-g(x)][h(x)-g(x)]: x \in U\} > 0,$$

it follows from Definition 1 that there exists a sequence $\{g_i\}$ of elements of G satisfying conditions (i) and (ii) with the set D replaced by U.

Let us assume that an integer n has been chosen so that for all $i \ge n$ we have

$$\|g-g_{\boldsymbol{\ell}}\|<\min\left(\delta\,,\,rac{arepsilon_0}{2}
ight), \quad ext{ where } \ \delta\,=\,\inf\left\{|f(x)-g(x)|\colon\,x\in\,U
ight\}.$$

Since $\delta > 0$ by (1), condition (i) implies that it is possible to select such an n. Hence for each fixed $i \ge n$ and for all $x \in U$ we have

$$\operatorname{sign}[f(x)-g(x)] = \operatorname{sign}[f(x)-g_{\ell}(x)] = \operatorname{sign}[g_{\ell}(x)-g(x)]$$

and

$$|f(x) - g_{i}(x)| = ([f(x) - g(x)] - [g_{i}(x) - g(x)]) \operatorname{sign}[f(x) - g_{i}(x)]$$

$$= |f(x) - g(x)| - |g_{i}(x) - g(x)| \le ||f - g|| - \eta_{i},$$

where, by (ii), the number $\eta_i = \inf\{|g_i(x) - g(x)|: x \in U\}$ is positive. Now, for all $i \ge n$ and $x \in X \setminus U$ we have

$$|f(x)-g_{\boldsymbol{\ell}}(x)| \leq |f(x)-g(x)|+|g(x)-g_{\boldsymbol{\ell}}(x)|$$

$$<||f-g||-\varepsilon_0+\frac{1}{2}\varepsilon_0=||f-g||-\frac{1}{2}\varepsilon_0.$$

Combining this inequality with the earlier inequality for $x \in U$, we obtain

$$||f-g_i|| \leqslant ||f-g|| - \min\left(\frac{1}{2}\,\varepsilon_0,\,\eta_i\right) < ||f-g|| \quad \text{for each fixed } i \geqslant n.$$

Thus we get a contradiction to the fact that g is a best approximation in G to f.

Sufficiency. Let us suppose on the contrary that an element $h \in G$ is a better approximation to f than g, i.e. ||f-h|| < ||f-g||. Write $\delta = ||f-g|| - ||f-h|| > 0$. Let ε_0 be a positive number such that $\varepsilon_0 < \delta/2$. For every ε , $0 < \varepsilon < \varepsilon_0$, and for all $x \in M_{f-g}(||f-g|| - \varepsilon)$ we have

$$|f(x)-g(x)|-||f-h||\geqslant ||f-g||-\varepsilon_{\mathsf{o}}-||f-h||>rac{\delta}{2}.$$

Hence for these ε and x we obtain

$$\begin{split} &[f(x) - g(x)][h(x) - g(x)] \\ &= |f(x) - g(x)| \left(|f(x) - g(x)| - [f(x) - h(x)] \operatorname{sign} [f(x) - g(x)] \right) \\ &> |f(x) - g(x)| \left(||f - h|| + \frac{\delta}{2} - [f(x) - h(x)] \operatorname{sign} [f(x) - g(x)] \right) \\ &\geqslant \frac{\delta}{2} |f(x) - g(x)| \geqslant \frac{\delta}{2} \left(||f - h|| + \frac{\delta}{2} \right). \end{split}$$

This implies that (1) is satisfied. Therefore, the proof is completed. Note that the proof of the sufficiency of Theorem 1 does not require any assumption about the structure of G.

Now, we assume that X is a compact metric space. In this case we denote the space $C_b(X)$ by C(X). We often characterize the best Chebyshev approximation for functions from C(X) by the following criterion:

KOLMOGOROV CRITERION. An element $g \in G$ is a best approximation to $f \in C(X)$ in G if and only if there is no element $h \in G$ such that

$$[f(x)-g(x)][h(x)-g(x)]>0 \quad \text{ for all } x\in M_{f-g}.$$

Obviously, this criterion is true only for the sets G satisfying some additional restrictions (see, e.g., [2] and [4]).

THEOREM 2. A necessary and sufficient condition for the Kolmogorov criterion to hold for all $f \in C(X)$ is that G has the weak betweenness property.

Proof. Necessity. Let h, g be arbitrary fixed distinct elements of G and let D be any non-empty closed subset of X such that

$$\delta_1 = \min\{|h(x) - g(x)|: x \in D\} > 0.$$

Define a closed subset Z of X by $Z = \{x: g(x) = h(x)\}$. Obviously, we have $D \cap Z = \emptyset$. Let λ_i (i = 1, 2, ...) be any sequence of positive numbers convergent to zero. Denote by f_1 the function from C(X) defined by

$$f_1(x) = g(x) + \varepsilon_1 \frac{\operatorname{dist}(x, Z)}{\operatorname{dist}(x, Z) + \operatorname{dist}(x, D)} \operatorname{sign}[h(x) - g(x)],$$

where $0 < \varepsilon_1 < 0.5 \min(\lambda_1, \delta_1)$.

Since $[f_1(x)-g(x)][h(x)-g(x)]>0$ for all $x\in D$ and $D=M_{f_1-g}$, it follows from the Kolmogorov criterion that there exists a better approximation $g_1\in G$ to f_1 than g_1 , i.e. $||f_1-g_1||<||f_1-g||=\varepsilon_1$. Hence we have

$$||g-g_1|| \leq ||f_1-g_1|| + ||f_1-g|| < \lambda_1.$$

Additionally, since $|f_1(x) - g_1(x)| < |f_1(x) - g(x)|$ for all $x \in D$, we can easily show that $g_1(x)$ lies strictly between g(x) and h(x) for all $x \in D$. Put

$$\delta_2 = \min\{|g_1(x) - g(x)|: x \in D\} > 0.$$

Now, replacing g_{i-2} ($g_0 = h$) by g_{i-1} , λ_{i-1} by λ_i , and δ_{i-1} by δ_i , we can construct — by induction — functions f_i (i = 2, 3, ...) such that $D = M_{f_i-g}$ and that g is not the best approximation to f_i in G. Finally, denoting a better approximation to f_i by g_i , we may prove that conditions (i) and (ii) in Definition 1 are satisfied for these g_i . Thus the proof of the necessity is completed.

Sufficiency. Since X is a compact space and $f, g \in C(X)$, we obtain

$$\mathit{M}_{\mathit{f-g}} = \bigcap_{\epsilon>0} \mathit{M}_{\mathit{f-g}}(\|\mathit{f}-\mathit{g}\|-\epsilon)$$

and, consequently, the Kolmogorov criterion holds in the case where G has the weak betweenness property (see also [7], Theorem 5).

Finally, we give an example of a non-linear approximating family G which does not have the weak betweenness property.

Example 3. Let x_i , $a = x_0 < x_1 < ... < x_{s+1} = b$ ($s \ge 0$), be arbitrary knots and let P_i (i = 0, 1, ..., s) be n_i -dimensional Haar subspaces on intervals $[x_i, x_{i+1}]$. Let us set

$$P[x_1,\ldots,x_s] = \{p \in C[a,b]: p \mid [x_i,x_{i+1}] \in P_i, i = 0,1,\ldots,s\},\$$

where $p \mid [c, d]$ denotes the restriction of the function p defined on [a, b] to the subinterval [c, d] of [a, b]. It is known [6] (see also [1]) that

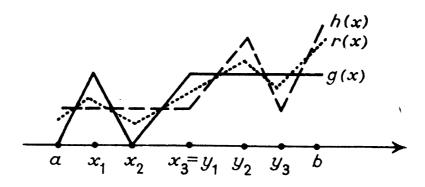


Fig. 1

 $P[x_1,\ldots,x_s]$ is a $(\sum_{i=0}^s n_i-s)$ -dimensional linear subspace. We denote by P^0 the $(\sum_{i=0}^s n_i)$ -parameter non-linear family of the functions from $P[x_1,\ldots,x_s]$, where knots $x_i,\ a\leqslant x_1\leqslant x_2\leqslant\ldots\leqslant x_s\leqslant b$, are free, i.e. x_i are unknown parameters. In general, the set P^0 has not the weak betweenness property.

Indeed, setting s = 3, $P_i = \text{span}\{1, x\}$ and $D = \{x_1, x_2, x_3, y_2, y_3\}$ (see Fig. 1), it is obvious that there exists no polygonal line r(x) with at most three vertices, lying between g(x) and h(x) for all $x \in D$. Consequently, condition (ii) in Definition 1 is not satisfied for this family P^0 .

Note that the family P^0 contains the important family of splines with free knots [5]. From Example 3 and Theorem 2 it follows that we cannot use the theorem of Kolmogorov type to the characterization of best approximations by elements of P^0 in the whole space C[a, b]. Therefore, the following question is interesting:

What is a necessary and sufficient condition for g to be a best approximation in P^0 to an arbitrary function $f \in C[a, b]$? (P 1169)

REFERENCES

- [1] M. W. Bartelt, Weak Chebyshev sets and splines, Journal of Approximation Theory 14 (1975), p. 30-37.
- [2] C. B. Dunham, Chebyshev approximation by families with the betweenness property, Transactions of the American Mathematical Society 136 (1969), p. 151-157.
- [3] D. W. Kammler, An alternation characterization of best uniform approximations on noncompact intervals, Journal of Approximation Theory 16 (1976), p. 97-104.
- [4] G. Meinardus, Approximation of functions: Theory and numerical methods, Warszawa 1968 [in Polish].
- [5] J. R. Rice, The approximation of functions, Vol. 2, Reading 1969.
- [6] R. Smarzewski, On weak Chebyshev subspaces and Chebyshev approximation by their elements, Zastosowania Matematyki 16 (1979), p. 475-483.
- [7] Chebyshev optimal starting approximation by families with the weak betweenness property, ibidem 16 (1979), p. 485-495.

DEPARTMENT OF NUMERICAL METHODS M. CURIE-SKŁODOWSKA UNIVERSITY LUBLIN

Reçu par la Rédaction le 15. 7. 1976; en version modifiée le 26. 1. 1978