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1. Introduction. Feferman and Vaught in their paper [7] on products
of algebraic systems investigated the relation between the first order
properties of a generalized product of structures and those of its factors.
In its simplest form their basic result can be described as follows.

If ((A;, RD|ie I) is a set of structures, then the product [[(A;lie I)
may be considered as 2/-valued structure, if the truth value [ (fi, ..., f,)]
for a formula y(2,, ..., z,) and elements f,, ..., f, of the product is defined
by [9(fay.oerfu)] = {te I| A F p(fi(3), ..., fo(9))}. Feferman and Vaught
proved that for every formula ¢ one can find a finite sequence y,, ..., ¥,
of formulas and a formula @ of the language of boolean algebras such
that ¢(fy, ..., f,) holds in [[<A;lieI) iff

¢(["P1(f19 cer S 1y oooy [0 (f1s "'7fn)])

holds in the subset algebra 2. Their generalized products are obtained
by admitting additional relations in the subset algebra 27 and by rela-
tivizing the product with respect to a definable subset of the product.

Replacing the direct product formation by a more general product
formation, different authors have extended the Feferman-Vaught result
to reduced products (cf. [1], [2], [13]), limit powers (cf. [16], [17], [19])
and boolean powers (cf. [1]). Quite recently, Comer [3] extended the
result to structures of sections of a sheaf of structures over a boolean
space. Moreover, every boolean power can be considered as a structure
of sections in the sense of Comer as we will show in the appendix (cf. [5]).

In this paper we want to show that all the various generalizations
can be obtained as special cases of a general result. We shall consider
boolean-valued structures which satisfy a maximum principle and a finite
completeness property. Then we infer as before that ¢(a,, ..., a,) holds
in the B-valued structure 4 considered as 2-valued structure iff

@([‘lpl(al, ey @)y oeey [Ym(@y ooy a’n)])
holds in B.
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In addition, we shall introduce the notion of a boolean-valued power
of a structure, which contains as special cases all the different powers
which have been considered so far. Thus we are able to study the relations
between the different types of powers by a uniform method. In particular,
an abstract characterization of certain boolean-valued powers yields
isomorphisms of powers of different type in many cases.

2. Main result. We consider a first order language L with equality =,
negation ], conjunction A and existential quantification 3. For the
sake of simplicity we assume that L has only one n-ary relation symbol ».
Besides L we have to consider Lg,, the first order language of boolean
algebras, with equality and the usual operations.

As Feferman and Vaught did, we introduce the notion of an acceptable
sequence. A sequence {(D; y,..., y,> is called acceptable if y,,..., p,
are formulas of L and @ is a formula of Ly, with the first m wvariables
as free variables. An acceptable sequence {®; y,, ..., y,> is called parti-
tioning if the formulas y,v...vy, and TJ(y;Ay;) for ¢ # j are proposi-
tional tautologies. The following procedure associates with every acceptable
sequence {®; v,, ..., ¥,,> a partitioning sequence (®’; vy, ..., y;>, where
I = 2™ Let {8;|1 < k <1} be an enumeration of the subsets of {1,..., m}
and let y, be the conjunction of the formulas y; with ¢ in s, and Ty,
with j not in 8, and let &'(«,, ..., #;) be the formula which states that
there exist z,, ..., 2, such that &(z,, ..., 2,) and each z; is the disjunction
of those z;’s with ¢ in s.

Now we can associate with every formula ¢ in L an acceptable se-
quence ¢*, the companion sequence of ¢:

(1) 7(®yy.ee, @)* = Yy =15 7(2yy ---5 Tp)),
(@ =X)* = {Y1VY2) > Ys =1; & =Ty, 8y = Ty, T = Ty);

(2) if 'P: = {D,; Yipy oo ‘l’l,m1> and ‘P; = (Dy; Y2,19 0049 'I’z,m2>7 then
(PrA@)* = {P1(Y1s -3 Ym) A P2 (Ym 415 -+ oy Ymy4mg) 3

Y119 o0 Yimyy Yo,10 000 '/’2,m2>;

(3) if @* = (D; y1y ...y Ym>, then (T1p)* = T1P; Y1y ovvs Y3

(4) i g* =<DP; 91, ..., Y, then (Jop)* = (P";Iayy, ..., Joy,), where
k =2™ and <{9'; v, ..., ¥, is the partitioning sequence obtained
from {(D; y;, ..., ¥m>, and D'’ is the formula which states that
there exist z,, ..., 2, such that 2,,...,2, form a partition, 2 < x;
for ¢ =1,...,k, and that @'(z,...,2;) holds.

It can be verified easily that the free variables of the y;’s in the
companion sequence of ¢ are contained in the free variables of ¢.

We now turn to the semantical notions. A boolean-valued structure
over a set 4 is a quadruple (4, B, E, R), where B is a boolean algebra
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and E: A’>->B and R: A"—B are B-valued relations such that the following
conditions are satisfied:

(1) E(ay, ay) = E(ay, a,), E(ay, a;)AE(ay, a3) < E(a,, a;);
(i) E(a;, a;) = E(a,, a;) = E(a,, a,) implies a, = a,;
(iii) E(ay, a))A...AE(a,, a,)AR(ay, ..., a,) < R(ay, ..., a,);
and B has sufficiently many suprema such that for every sentence y with
constants from A the truth value [y] in B can be defined as follows:

(1) [r(ayy ...y a,)] = R(@yy...,a,), [a, =a,] =FE(ay,q,),
(2) [Tlp(ayy ..y an)] = —[o(ay, ...y ay)],

(3) [p1A@e] = [p1]A[ge],

(4) [Azp(x, ay, ..., a,)] = sup{[p(a, @1y ..., ay,)] |acA}.

It can be verified easily that (iii) is still valid for arbitrary sentences y
with constants from A. The elements a with E(a, a) = 1 are called global.
(A, B, K, R) is called global iff every element in A is global.

In a boolean-valued structure {4, B, E, R) we can define an ordering
as follows: a, < a, iff [a, = a,] = [a, = a;]. Two elements a,, a, are
called compatible iff [a, = a,]A[a;, =a,] = [a, = a,]. (4, B, E, R) is xaid
to satisfy the sheaf condition if it satisfies the following two conditions:

(1) It has restrictions, i.e. for every ¢ and b in B with b < [a =: a]
there exists a unique alb in A such that a|b < a and b = [a = a|b].

(2) It has suprema of pairwise compatible elements, i.e., for every
set <a;|ie I) of pairwise compatible elements such that sup{[a; = a,]|ie I}
exists, there exists an element a such that a; < a for ¢ in I and [a = a]
= sup{[a; = a;]|i¢ I}.

(A, B, E, R is said to satisfy the finite sheaf condition if in (2) we
require I to be finite. If B is complete, then (A, B, E, R) satisfies the
sheaf condition iff it has restrictions and, for every set {(a;|ie I> of ele-
ments of A and every set <{b;teI)> of pairwise disjoint elements such
that b; < [a¢; = a;], there exists a in A such that b, < [a = a;] for ¢ in I
and [a = a] = sup{b;|ie I}. The finite sheaf condition can be rephrased
similarly for arbitrary B.

(4, B, E, R) is called complete (cf. [15]) if, for every set {a;ieI)
of elements in A and for every set (b,/ie I) of pairwise disjoint elements
such that b; < [a; = a;]for < in I, there exists a in 4 such that b; < [a = &,].
(4, B, E, R) is called finitely compleie iff it satisfies this condition for
finite I. If (A4, B, E, R) is complete and has restrictions and if B is com-
plete, then (A4, B, E, R) satisfies the sheaf condition. The same holds true
with no assumptions on B if “complete” is replaced by “finitely com-
plete”.
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(A, B, E, R) is said to satisfy the mazimum principle (cf. [15])
if for every formula ¢(z, a,,...,a,) there exists a in A4 such that
[Azg(z, ay, ..., a,)] = [¢(a, ay, ..., a,)]. Moreover, if (4, B, E, R) is com-
plete and if Bis complete, then {4, B, K, R) satisfies the maximum prin-
ciple. To obtain this result one replaces the supremum determining
[z (z, a,, ..., a,)] Dy a supremum over a disjoint refinement. Here
the axiom of choice is used.

If {4, B, E, R) is a boolean-valued structure and D is a filter on B,
then the quotient (A, B, E, R)|D is defined by <{4/D, B|D, E|D, R|D).
A|D is obtained by identifying a,,a, in A iff (E(al, a,)v E (a,, az))—>
—FK(a,,a,) is in D. R/D and E/D are defined as B/D-valued rela-
tions by R/D(a,/D, ..., a,|D) = R(a,, ..., a,)/D and E|/D(a,/D, a,/D) =
= K(a,, a,)/D. It should be noted that finite completeness and the finite
sheaf condition are preserved under taking quotients. Moreover, if
{4, B, E, R) satisfies the maximum principle, then [¢(a,/D, ..., a,/D)]
= [@p(@yy ...y 6,)]/D for arbitrary ¢ and <4, B, E, R)/D satisfies the
maximum principle.

The 2-valued reduct {A, B, E,R)|, of (A,B, E,R) is given by
(A, 2, E|,, R|,>, where R|,(a,,...,a,) =1 iff R(ay,...,a,) =1 and
El(a,, a,) =1 iff H(a,,a,) = E(a,, a,) = E(a,, a;) iff a, = a,. Hence
(A, R|,> is a structure for L in the usual sense.

Now the main result can be formulated as follows:

THEOREM. If {(D; v,y ..., @, 18 the companion sequence of the formula
@(Zyy...,2,) tn L and if (A, B, E, R) is a boolean-valued structure which
is finitely complete and satisfies the maximum principle, then the following
two statements are equivalent:

(1) (A, B, E, B)|; F p(a,,...,a,),

(ii) B E (D(["/’l(a'l’ ceny O]y coey [Pm(@ry ooy an)])-

The proof proceeds by induction on ¢. If ¢ is the atomic formula
r(ey,...,2,), then J{4,B, E, R)|, Er(a,,...,a,) iff R(a,,...,a,) =1
iff B k[r(a;,...,a,)] =1. If ¢ is the atomic formula », = x,, then
(A,B,E,R)|, ka, =a, iff E(ay,a,) = E(a,, a;) = E(a,,a,) iif B F
F([a, = a;]Vv[a, = a,]) >[a, = a,] = 1. The induction steps are straight-
forward except for the case of existential quantification.

TIf (D} Y1y .-y Yy is the companion sequence of the formula ¢, then
(D" Ay, ..., Ivy,> with k = 2™ is the companion sequence of Jugp.
The formula &' (x,,...,x,) states that there exist 2;,...,2, such that
21y ..., 2, form a partition, @’ (2,, ..., 2;) holds and 2; < #; for ¢ = 1, ooy k.
(D' ;wy, ..., w>is the partitioning sequence obtained from (D; y,, ..., P>

If dzyp(e, ay,...,a,) holds in {4, B, E, R)|,, then there exists a

in A with {4, B, K, R)|, F¢(a, a,,...,a,) and hence, by induction,
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B F dj(["/’l(a” Ary ooy @p)]y oees [Wm(@y @y ..y a’n)])-

This yields B k ®'([y;(a, a3, ..., a,)], ..., [yi(a, ay, ..., a,)]) and
hence
B F ¢H([3m/’1(m7 Qyyooey @y)]yenny [aa”/’k(w7 Ay .eey a’n)])

as required.
Conversely, if in B the formula

Ql’([aww;(my Ary oeey a’n)]7 ey [3:1/'1/);‘($, Ayy «oey an)])
holds, then there exist b,, ..., b, in B such that b,, ..., b, form a partition
of B, @' (b,, ..., b,) holds in B and b, < [Izy;(z, a,, ..., a,)]fori =1, ..., k.
The maximum principle yields elements a; with
[3901/;;-(:1;, Ayyeeey Oy)] = ['P;(a’;', Ayyonny @) ]

The finite completeness yields an element a’ with b; < [¢’ = a;] and
hence
b < [0 = a]la[yi(a;, ayy -5 8,)] < [wi(0y 0y, ..., 0,)]  for i =1,...,k

This implies b, = [y;(a’, a4, ..., a,)] since <®’; i, ..., v.> is parti-
tioning. Therefore we obtain
B F 45'(['.01(“', Ayy ey a’n)], ey ["P;c(a”y Ay ovey “n)])
and hence
B E O((y1(ay @1y ey @y)], -y [¥m(@y 8,y .- -5 a,)]).
By induction this implies {4, B, E, R)|, F ¢(a’y a,, ..., a,) and thus
(4, B, E, R)|, k Jxp(x, ay, ..., a,)

as required. This completes the proof.

It should be noted that the class of boolean-valued structures to
which the theorem can be applied is closed under quotients with respect
to a filter, since finite completeness and the maximum principle are pre-
served under taking quotients.

3. Applications to products and powers. In the following we want
to show how the various generalizations of the Feferman-Vaught theorem
can be obtained from our theorem.

A product [[(A;|lie I> of structures (4;, R;> can be made into a
complete 2!-valued structure, if B and E are defined by

R(fyy--esfn) = {ieI[A,-' Fr(fi(d), .., fal(9)))

E(fi, fo) = {ie L1 fi(3) = fo(i)}

for fi,...,f, in []{A;lie I>. Hence the reduced product [[{A;lie I)|D,
where D is a filter on I, is a finitely complete 27/D-valued structure satis-

and
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fying the maximum principle. This yields the results of Chang and Keisler
in [2], Pacholski in [13] and Galvin in [9].

Let P be a sheaf of structures over a boolean space X in the sense
of Comer [3], where (P,, R, is the structure at the stalk P, for # in X
(cf. [5]). Let B be the dual algebra of X. Then I'(X, P), the structure
of global sections, can be made into a finitely complete B-valued structure
if R and F are defined by

R(fyy...sfn) = ‘walPa: F r(fl(w)’ 7fn(x))}
and
E(f1) fo) = {we X | fi(®) = fa(2)}
for f,,...,f, in I'(X, P). Comer’s condition (C) ensures that

[9(f1s - os )] = {2 X | Pk p(fi(®@), ..., fm(®))}

is in B and that the maximum principle holds. This yields the result of
Comer in [3] for structures of sections. I'(X, P) could be called a generalized
product. More generally, quotients of such structures might be considered.

In the literature various types of powers have been considered, e.g.
reduced powers, limit powers and boolean powers. The following notion
presents a generalization of all of these. A boolean-valued structure
{4, B, E, R) is said to be a boolean-valued power of a structure {C, 8>
if there exists a map d from C to A such that

))__{1 if ¢, = ¢,,

(0) E(d(¢), d(c)) = 0 ife Lo,

(1) E(ay, a;) = SuPlE(an d(c))/\E(azy d(c)) lce C}’

(2)  RB(ay,...,a,)
= sup{E(a,, d(¢))) A ...AE(ay, d(c,)) | <C, 8> Er(cyy ..., )}

By induction we obtain for arbitrary ¢(a,,...,a,,)

(3) [p(ay) ..., ap)]
= sup{[a; =d(c))]A ... Al = d(cy)]I<C, 8) F p(e1y ..., Cm)}-

In particular, we have
(4) [plder); ..., dlen))] =1 iff  <C,8) Fgler, ..., cm).

The quotient (A4, B, E, R)/D is said to be a boolean-valued reduced
power of {C, 8>. Because of (4) the elementary type of (4, B, E, R)|D|,,
where (4, B, E, R) is a finitely complete boolean-valued power of {C, 8)
satisfying the maximum principle, depends only on the elementary type
of (C, 8 and the elementary type of B/D This follows by a twofold
application of the main theorem.
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Any boolean-valued power {4, B, E, R) of a structure <C, §) can
be represented as follows. Let 0¢®> be the set of functions g from C to B
such that g(e)ag(c’) = 0 for ¢ = ¢’ and that sup{g(c)|ce C} exists. Let
¢: A—C® be defined by e(a) (¢) = E(a, d(c)). It follows from (1) that e
is injective. Let B’ be the minimal completion of B. Then C‘® becomes
a B’-valued structure, if R’ and E’ are defined by

R'(g1y -y 95) =sup{ga(Ci)A ... Agn(c,) [<C, 8> Fr(ey, ..., )}
and

E'(gy, g:) = sup{gi(c)ags(c)|ce C} for g,,...,9, In P,

Then e will be a truth value preserving map.

Under certain conditions we can characterize boolean-valued powers
up to isomorphism. A boolean-valued power {4, B, E, B) of <C, 8) is
called bounded if every element a in A is bounded, i.e. the set {¢|[a = d(c)]
# 0} is finite. With the help of the above representation we can easily
verify that any two global, complete boolean-valued powers {4,, B, E,, R,)
and {4,, B, E,, R,> of (C, 8) are isomorphic as boolean-valued struc-
tures. The same holds true if ‘‘complete” is replaced by ‘‘bounded and
finitely complete”. Another version can be obtained using the sheaf
condition instead of the global completeness. More generally, we could
consider %-bounded elements and k-completeness, where k£ is an infinite
cardinal.

If (4, B, E, R) is boolean-valued power of (C, §), then any subset A’
containing d(C) determines a new boolean-valued power {A4’, B, E', R")
of (C, 8, where E’ and R’ are the restrictions of £ and R to A’. Moreover,
the inclusion is a truth value preserving map. Hence (4’', B, E’, R'>|,
will be an elementary substructure of {4, B, E, R)|, if both structures
are finitely complete and satisfy the maximum principle. In particular,
the boolean-valued power determined by A4,, the subset of bounded
elements, is finitely complete and satisfies the maximum principle. The
latter can be seen as follows.

Any boolean-valued power (4, B, E, R) of {(C, 8), which is bounded
and finitely complete, satisfies the maximum principle. The proof relies
on the existence of an element a’ for every formula ¢ (, a,, ..., a,,) which
satisfies

[0 = d(0)] = sup{[a, = d(e)]A ... Altm = d(Cm)]| ¢ = F(c1, ...y Cm)},

where f is a Skolem function for ¢. I am indebted to S. Koppelberg for
this idea. The axiom of choice is being used in this proof. Finally, it should
be noted that the quotient with respect to a filter of a bounded boolean-
valued power of a structure (C, 8) is again a bounded boolean-valued
power of (C, S>.
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In the following we will study the various powers which have been
considered in the literature. First we shall discuss the complete powers Af
and A!P) of a structure (4, R), where I is a set and B is a complete boolean
algebra. The boolean power AP! is defined by

AP = {ge B4 | g(a)ag(a’) = 0 for a + &', sup{g(a)| acd} =1}

(cf. [12]).
In particular, we have A7 ~ A!®l for B = 2!. A’ becomes a complete
2l.valued power of (4, R>, if E' and R’ are defined by

E(fi,f2) = U (@) fl(a)la'fA> = {te I|fi(?) = f2(3)}

and
B (fiy -0 Ja) = U @) A - Af7  (@,) [<A, BY Er(ay, ..., a,))
= [ieII(A, R> E r(fl(i), ...,f,,(i))} for f,,...,f, In AL

A8l becomes a complete B-valued power of (4, R) if R’ and E’
are defined by

E'(g,, 92) = sup{g:(a)Args(a)| acAd}
and

R'(g1y..+5 9n) = Sup{gi(a))A...Ag(a,) [ (4, B) F7(ay, ..., a,)}

for g;5..., 9, in A5,

Hence the reduced power A/D resp. A®)/D, where D is a filter
on I resp. B, can be viewed as a finitely complete boolean-valued reduced
power with values in 27/ D resp. B/D which satisfies the maximum principle.

The limit power A|F of A, where F is a filter on I x I, is defined by

ANF = {feAT| {<4,5>1f(4) = f(j)}e F)
(cf. [11]).

AT| F canberepresented as the directed union | J<A"?| Qe F,Q<Eq(I),
where Eq(I) is the set of equivalence relations on I. The boolean limit
power AP I in the sense of Potthoff [14], where I" is a directed set of
complete subalgebras with complete inclusions, consists of those elements
of A8l whose range is contained in some algebra C in I. A'®!|I" can be
represented as the directed union ) (4[°!| Ce I'>. Since finite completeness
and the maximum principle are preserved under the directed union of boo-
lean-valued powers, AY|F resp. AB)|I" can be viewed as finitely complete
boolean-valued power of (A, R)> with values in 2| F resp. 28| I" which
satisfies the maximum principle if £’ and R’ are defined as for the full
powers. As above, the limit reduced powers A!|F/D and A®)|I'/D have
values in 27| F/D and 28| I'/D and are again finitely complete and satisfy
the maximum principle. Hence the theorem yields the results of \Wasz-
kiewicz and Weglorz in [16] on limit reduced powers, Wojciechowska’s
result on limit powers in [19] and Ash’s result on boolean powers in [1].
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The bounded powers AL resp. AP), where B is an arbitrary boolean
algebra, can be considered as special limit powers.

AL resp. AP is defined by AL ={fed”|{acA|f(i) = a for some
¢ in I} is finite} resp. APl = {ge B*|g(a)rg(a’) = 0 for a # o', {acA|
g(a) # 0} is finite, sup{g(a)|acd} =1}. AL is the subset of bounded
elements of AZ. Hence it determines a finitely complete 2Z-valued power
of (4, R) satisfying the maximum principle, if £’ and R’ are defined
as for the full power. Moreover, AL becomes an elementary substructure
of Al Similarly, AIP! becomes a finitely complete, bounded B-valued
power of (4, R) satisfying the maximum principle if £’ and R’ are defined
as in AP If B is complete, then AP is the set of bounded elements
of AP} and APl becomes an elementary substructure of Al As above,
these results can be extended to the bounded limit reduced powers AZ|F/D
and APl I"/D, where I' is a directed set of subalgebras of B. In particular,
this yields Ash’s results in [1] on bounded reduced powers and bounded
boolean powers. More generally, we could have considered k-bounded
powers, where k is an infinite cardinal.

It follows from our results on characterizations of boolean-valued
powers of a structure (4, R) that AP is the prototype of the bounded,
finitely complete, global powers with values in B. Therefore we have
the following isomorphisms:

(1) AL F/D ~ AP, where B = 27| F/D,
(2) APD ~ADP,
(38) AT ~ AB) where B’ = 28T,

(4) Al ~ AX|F, where X is the dual space of B and F is the filter
on X X X generated by the equivalence relations with finite clopen
partitions.

The special case of (1) concerning reduced powers is mentioned in
Ash [1]. The results in (2) and (3) seem to be new. The result in (4) can
be found in Waszkiewicz and Weglorz [16]. It relies on the observation
that B is isomorphic to 2%|F in this case.

If B is complete, then A!B! is the prototype of the complete, global
powers of (A, R) with values in B. However, we cannot replace in (1)-(3)
the bounded powers by the corresponding full powers unless all boolean
algebras involved are complete. With respect to (4) we refer to the
appendix. But the corresponding full powers in (1)-(4) will at least be
elementarily equivalent.

The results can be summarized as follows. All the various powers
which have been studied so far can be considered as finitely complete
boolean-valued powers satisfying the maximum principle. Hence the
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bounded elements of any such power determine an elementary substruc-
ture which is isomorphic to a bounded boolean power. The same holds
true if ‘““bounded boolean power’’ is replaced by “bounded limit power”.
Thus any such power is up to elementary equivalence a bounded boolean
power resp. bounded limit power resp. limit power. Moreover, any such
power is up to elementary equivalence a bounded reduced power resp.
reduced power. This can be seen as follows. By a theorem of Ershov [6]
there exists for every boolean algebra B a filter D on a set I such that
B and 27/D are elementarily equivalent. Hence the bounded powers AP
and AI/D are elementarily equivalent by our earlier remark on the ele-
mentary type of powers. This yields the required result.

4. Appendix. It is well known that the bounded boolean power A!Z
of a structure (4, R> can be viewed as the structure of global sections
in the sense of Comer [3] of the constant sheaf A X X over X, where X
is the dual space of B and A is considered as discrete space. With every
global section, i.e. continuous function from X to A, we associate an
element g of AP as follows: g(a) = f~'(a) for a in A.

In order to describe the full boolean power A!?! of a structure (4, R)
as a structure of global sections of a sheaf over X, we have to consider
the following sheaf. Let P be the associated sheaf of the constant sheaf
A x X over X with respect to the double negation (= interior of the
closure) topology. Since B is complete, its dual space X is extremally
disconnected. In particular, a subset is clopen iff it is regular open. The
set of sections I'(U, P) of P over an open subset U of X can be described
as the direct limit of the sets of continuous functions from V to A, where V
is dense open in U. Hence we can associate an element g of AP with
every global section f of P, i.e. continuous function f into A4, which is
defined on a dense open subset of X, as follows: g(a) = int(cl ( f‘l(a))).
However, two such functions have to be identified if they agree on a
dense open subset of X (cf. [4]). Moreover, the bijection preserves truth
values. Comer’s condition (C) is satisfied since X is extremally discon-
nected.

REFERENCES

[1] C. J. Ash, Reduced powers and boolean extensions, Journal of the London Mathe-
matical Society 9 (1975), p. 429-432.

[2] €. C. Chang and H. J. Keisler, Model theory, North Holland, Amsterdam
1973.

{3] S. D. Comer, Elementary properties of structures of sectioms, preprint, 1973.

(4] A. Daigneault, Boolean powers in algebraic logic, preprint, Montréal 1969.

{61 D. Ellerman, Sheaves of structures and generalized wuliraproducts, Annals of
Mathematical Logic 7 (1974), p. 163-195.



FEFERMAN-VAUGHT THEOREM 11

(6]
{71
(8]

(9]
[10]

[11]
123
[13]
(14]
(15]
[16]
(17]
[18]

(19]

[20]

Y. L. Ershov, Decidability of the elementary theory of relatively complemented
lattices and the theory of filters, Algebra i Logika, Seminar, 3 (1964), p. 17-38.
S. Feferman and R. L. Vaught, The first order properties of products of alge-
braic systems, Fundamenta Mathematicae 47 (1959), p. 57-103.

W. Felscher, An algebraic approach to first order logic, Symposia Mathematica 5§
(1970), p. 133-148. '

F. Galvin, Horn sentences, Annals of Mathematical Logic 1 (1970), p. 389-422.
D. Higgs, A calegory approach to boolean-valued set theory, preprint, Waterloo
1973.

H. J. Keisler, Limit ultrapowers, Transactions of the American Mathematical
Society 107 (1963), p. 382-408.

R. Mansfield, The theory of boolean ulirapowers, Annals of Mathematical
Logic 2 (1971), p. 297-323.

L. Pacholski, On countably compact reduced products, I11, Colloquium Mathe-
maticam 23 (1971), p. 5-15.

K. Potthoff, Boolean ultrapowers, Archiv der Mathematischen Logik 16
(1974), p. 37-48.

D. Scott, Lectures on boolean-valued models for set theory, Notes for AMS —ASL
Summer Institute, UCLA 1967.

J. Waszkiewicz and B. Weglorz, Some models of theories of reduced powers,
Bulletin de I’Académie Polonaise des Sciences, Série des sciences mathémati-
ques, astronomiques et physiques, 16 (1968), p. 683-685.

B. Weglorz, Limit generalized powers, ibidem 16 (1968), p. 449-451.

J. Weinstein, First order properties preserved by direct products, Ph. D. Thesis,
University of Wisconsin, 1965.

A. Wojciechowska, Generalized limit powers, Bulletin de 1’Académie Polo-
naise des Sciences, Série des sciences mathématiques, astronomiques et physi-
ques, 17 (1969), p. 121-122.

— Limit reduced powers, Colloquium Mathematicum 20 (1969), p. 203-208.

Re¢u par la Rédaction le 9. 10. 1975



