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On Lakshmikantham’s comparison method
for Gronwall inequalities
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Absteact. Weo deal with Gronwall type integral inequalities of the form
. .
(1) fa@)<e®+Ht, [W(t.s,50))ds), ted = [a,f].

The main result is that, under appropriate continuity and monotonicity assumptions,
any solution » of (1) must satisfy

@ o) < a®) +H(LFM)] a<i<p (<A,
with #() = r(t, {, a), where 7 (t, 7, a) is the maximal solution of the differential system

dar
(8) o = (@ e +EEN]), o<t<T< Ay r() =0.

Corresponding results are obtained when < is replaced by > in one or both of (1),
(2), or with minimal rather than maximal solutions of (3). The results extend, and
in some cases clarify or correct, earlier results of V. Lakshmikantham. To this end
we algo include a detailed analysis leading to a correct domain of existence of maximal
or minimal solutions of differential systems of the form

(4) %:— =k@)g(r)+ o), r(a)=r10,

i
to which (3) often reduces. As special cases, wé also obtain (or:extend) earlier results
of Bihari, Gollwitzer, Stachurska and Beesack. Finally the method is also applied
to obtain more general results than those obtained recently by 8. G. Deo and U. D.
Dhongade for inequalities involving two integral terms, and to ‘eliminate a certain
defect in those results.

1. Imtroduction. One of the most useful and . pervasive techniques
used in the theory of ordinary:and partial differential equations and
integral equations consists in applying so-called Gronuall type inequalities.
Gronwall’s inequality appeared in 1919 in [13], although a special case
of it had occurred in Peano [22] as early as 1885. These inequalities,
and their numerous extensions and generalizations are, in fact, impli-
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cations of the form
(1) flz®) < (To) (1), ted =x(t)<X(), ted, <d,

where T is an operator involving integrals, f is a given increasing function,
J and J, are intervals, and X is a function which is an upper bound for
all functions # satisfying the hypothesis. (An abstract version for general
partially ordered spaces has been considered by A. Pelezar [23]; see
also F. Chandra and B. A. Fleishman [6] and L. Losonczi [18].) Examples
of such inequalities with f(#) = # are given in Bellman [3], Babkin [1],
Satd [24], Bihari [4], Li [17], Viswanatham [27], Jones [14], Willett [30],
Chu and Metcalf [7], Maroni [19], Beesack [2], Deo and Murdeshwar [11]
and Stachurska [25]. Examples with general (or special) f have been
considered by Willett and Wong [31], Gollwitzer [12], Butler and Rogers
[6], Lakshmikantham [15], and Deo and Dhongade [8], [9]. In addition,
results involving systems of inequalities have been giveh by Wazewski [29],
Opial [21], Olech [20], Ziebur [32], and Deo and Murdeshwar [10], among
others. )

The best results of the form (1) are those in which X is the solution
(or the maximal solution in the absence of uniqueness) of the corresponding
functional equation

(2) fX@) =(TX) M), ted.

(The concept of the maximal solution of an ordinary differential equation
also dates back at least to Peano [22].) Of the papers listed above, best
upper bounds of this form are found in [3], [4], [14], [30], [7], and the
maximal solution was explicitly introduced in [1], [24], [27], [29], [20],
[21], [32]. In many cases, especially for f(») s 2, the solution or maximal
golution of (2) can not be explicitly obtained.

V. Lakshmikantham [15] considered inequalities of the form

¢ o :
) fle@) <a@)+b)h[e)+ [Tt, s)w(s, a(s))ds], ted,

for which solutions of the corresponding functional equation are mnot
readily obtained. Nevertheless, by using a comparisonﬁtheorem for differ-
ential inequalities together with estimates of the maximal solutions of
related differential equations, a number of the earlier results were obtained.
in a uniform manner. It is the purpose of this paper to extend and clarify
Lakshmikantham’s comparison method somewhat, and to correct some
of the .defects and errors in [15], [8], [9].
Our main results will deal with the more general inequality

¢
(4) flo®) <a@+H(t, [W(t,s,a(s))ds), ted,
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and its special cases. We shall also apply these results to inequalities of
the form

i t
(5) flz®) < a(®)+ fkl(s)gl(a:(s))ds—f—h Uk (s)g(a;(s))ds),
considered by Deo and Dhongade [8], [9]. Many of the results obtained

are either extensions or improvements of earlier results obtained on -an
ad hoc basis.

2. The main theorem. We need the following well-known comparison
theorem, proofs of which may be found in Szarski ([26], Theorem 9.5,
p. 27), Lakshmikantham and Leela ([16], Theorem 1.4.1, p. 15), and
Walter ([28], Theorem X, p.68).

THEoREM 2.1. Leét F'(i, x) be continuous in an open set D containing
the point (a, #,), and suppose that the initial value problem

dr :
(1) Ezlﬂ(tﬂ'); r(a) = By,
has & magimal solution r = v(t) with domain [a, B,]. If x 18 a differentiable
fumction on [a, B;] such that (t, x(1)} e D for te[a, f,] and

(2) .m'(t)gF(t,w(t)), a <t < By, #(e) < B,
then
(2%) z(t) <r(t), oe<<I<pBy.

Moreover, the result remains valid if “mazimal’ is replaced by “minimal’’
and < 18 replaced by = in both (2) and (2').

‘Notation. In what follows we shall be dealing with monotonic
functions of several variables. If F,(%, s, ») is defined on I, xJ,; X K,,
where I,,J;, K, are intervals, then by saying that F,(u) is monotonic
(or non-decreasing, increasing, etc.) we shall mean that for each (3, s)
e I, X J,, the function g(u) = F,(%, s, u) is monotonic (or non-decreasing,
increasing, etc.) on K,. Similarly, if F,(¢, s, v) is another such function
defined on I, X J, X K,, then we say, for example, that F,(u), F,(?) have
the same parity (or the opposite parity) it F,(u), F,(?) are both non-increas-
ing or both non-decreasing (or that one is nmon-increasing and the other
is non-decreasing). We shall also use the symbol v to denote the logical
“01‘”.

THEOREM 2.2. Let f(w) be continuous and stricily monotonic on an
interval I, let H (t, v) be continuous on J X K, where J = [a, f] and K is
an interval containing 0, with H (v) monotonic, and let W (1, s, u) be comtin-
uous and of one sign on Ty x I, where 1T, = {(t, 8): a <8<t < B}, with
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W(t) and W (u) both monotonic. Suppose also that the functions © and a
are both continuous on J with

(3) a(t)+H(t,v) ef(I) for ted, vek, jo|<b,

for some consiamt b > 0. Let
¢
(4) fle®)<a@)+Ht, [ W(t,s,00)ds), ted,

and let »(t, T, a) be the maximal (minimal) solulion of

d
© _&’t_ = W(T,t,f o) +HE, M), oe<t<T<p (<B),
" r(a) =0,

if W(u), f have the same (opposite) parity, where f, > o is chosed so that
the maximal (minimal) solution exists on [a, f,]. Then, provided W (), H (v)
have the same parity,

(4") s S aM+HEFO)], oe<t<py,

where ¥(t) = r(t, 1, ¢) and < holds if (i) f is increasing and W (u), H(v)
have the same parity, whzle = holds zf 11) f q,.s' decreasing and W (u), H (v)
have the opposite parity.

Proof. The function F(T,t,r) = W(T,t,f [a(t)+H(t, r)]) is con-
tinuous on the compact set Ty x [—b, b], so there is a constant M > 0
such that |F (T, ¢, r)| < M on this set. It follows from a standard existence
theorem that, independent of T € [a, B], there exists f, > a (in fact, f;—a
> min(f —a, bM ")) such that all solutions of (5) exist on [a, 8,].

Fix T €[aq, Al and let a <t T. Then

(6) o(t,1) = fW(t,s,w(s))ds fW(T,s,m (s)) ds _'v(t Ty,

where < or > holds according as W (#) is increasing or decreasing. (Observe
that (4) implies that v(r, v) € K for all v € J; since K is an interval with
0 € K, it follows (by setting * = T or v = t) that »(¢, T') € K in both cases
of (6), whether W >0 or W< 0.) By (4), we obtain

(7) e(t) S e +H (¢t 0(t, 0)]

where < or > holds according as f is increasing or decreasing. Hence,
since v'(¢, T) = W(T, 1, x()) for a <1< T < B,

(8) ’”'(t;-T);W(T’t,f—'l[“(t)‘l‘ﬂ(tr'v(t,t))])a
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where < or.>> holds accordmg a8 W (u), f have the same or the opposﬂ;e'
parity. Now by (6),
(6") H(t,fv(t,t))§H(t,v(t, ), a<t<T,

‘where < or > holds according as W(#), H(v) have (a) the same parity,
or (b) the opposite parity. Thus

,f“[a(t)+H(t,@(t,t))]§f‘1[a(t)—|—H(t o(t, T))], a<t<T,

where < or > holds according ag (a’): (f increasing, (a.))v (f decreasing,
(b)), or (b'): ( f mcleasmg, (b))v (f decreasing, (a (a)). This in turn implies
that

(9) W(T,t,f“[a(t)+H(t,'v(t,t))])§W(T,t,f‘l[a(t)+H(t'v(t )},

where < or > holds according as (a”): (W(u) increasing, (a'))v (W (u)
decreasing, (b)), or as (b"'): (W(u) increasing, (b’))v (W (u) decrea,smg,
(a”)). Oombining this with (8) we see that provided W (t), H(v) have the
same parity, then

(10)  o'(t, I) SW(T, 4, f faW+H(t, 0, T))]), a<i<T<$B,

where < or > holds according as W (u), f have the same or the opposite
parity. '

Since v(a, T) = 0 the preceding comparison theorem shows that if
W(t), H(v) have the same parity, and if r(i, T, a) is the maximal or the
minimal solution of (5) as specified, then

o(t, )Sr(t,T,a), a<t<T<Pp,.
Setting ¢ = T and changing notation we obtain
(11) v(t, ) (), oa<I<py,

where < or > holds according as W (), f have (A) the same parity, or (B)
the opposme parity. As in the analysis of (6), (6), for a < ? < f; we have

Ht, o(t, ) SH(t, 7(2)),
where < or > holds according as (A'): (H (v) increasing, )v( (0) .

decreasing, (B)), or as (B’): (H () increasing, ( )v (H (v) decreasing, (A)).
Moreover,

f"[a(t )+ H(t, v(t, )| S alt) +H (8, 7)),

where < or > holds according as (A''): (f increasing, (A’)}v ( f decreasing, .
(B’)), or as (B”): (f increasing, (B))v (f decreasing, (A’)). Analyzing the
various cases we see that if W (i), H(v) have the same parily, then

(12) e +H(t, o, )| S @ HH L), e <I<B,

& — Annales Polonici Mathematicl XXXV.2
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where < or > holds according as W (u), H (v) have the same or the opposite
parity. The conclusion (4’) now follows in cases (i), (ii) from (7 ) and (12).
In the same way' one can prove |
THEOREM 2.3. Under the hypotheses of Theorem 2.2 suppose that

t
fle)=a) +H 1, fW(z,s,m(s))ds), ted,

and that W (t), H (v) have the opposite parity. Now let #(t) = r(t, t, a), where
r(t, T, a) 28 the maximal (minimal) solution of (5) according as W(u),f
have the opposite (the same) parity. Then

at) Zf  a(®) +H (L, FD)], o<E< By

where > or < holds according as case (i) or (ii) holds in Theorem 2.2,
- Remark 1. Similar results can be obtained for inequalities of the
form

B
(13) fla®)Sa@+H(t, [ W(t,s,0(s)ds), ted.
4

We do not state the results but only note that with essentially the
same hypotheses on the functions, the change of variable ¢t = —wu, ()"
= ¢(—1) transforms (13) into

123
foo(w) S ag(u)+ Hy(u, [ Wi(u, o,ml(a))da), —p<u< —a,
~B

with. H, (¢, v) = H(—1t,v), Wi, s,u) = W(—1t, —s,u), to which the
preceding theorems apply. Note that now, if < holds in (18), then W (1)
and H (v) must have opposite parity in order to apply Theorem 2.2.

Remark 2. In case K = [0, £,], then W > 0 necessarily holds (since
v(t, 1) e K); in this case hypothesis (3) reduces to

a(t) +H(t,v)ef(l), ted, 0<v<Db,

for some constant b €(0,1,]. A similar remark applies if K = [—t,,0].
We also note that the assumption that W was of one sign was only used.
in the proof of the theorem at (6) to ensure v(f, T) e K for a <t < T < B.
If this condifion is added as a hypothesis, then W may change sign.
In order to see that Theorem 2.2 actually includes Lakshmikantham’s
rosult ([15], Theorem 3.1 (i)), we require the following elementary lemma.
We shall also make extensive use of this lemma in later sections.
Luvwa 2.1. Let the functions F, @ be continuous and of one sign in
a domain D containing the point {a, #,), and suppose that the initial value
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problem
drl

— = G(,m),  rila) =1,

(14)

has a mazimal (¢f G>=0) or a minimal (¢f @ < 0) solution v, = r,(t) on
[a, B.] such that

‘S+={(t;'r):a<t</311 o< <n@)}eD fG=0
S_ ={(t,r): a<t< By, ro> =2rnMceD fEFLO

Ifo< LF(t, r < +G(t, r) for (3, 7) € 8., then all solutions v of the initial
value problem ‘ |

or

(15), F(t,7), r(a)= Toy

dr
a
exist on [a, ﬂlj and, moreover, r,< (1) << r(t) on [a, ;] if G > 0, or 1,
=r)=r(t) on [a, f;] if G<O0.

The proof follows from the fact that if r is any (local) solution of (15).
defined on some subinterval [a, §,] of [a, 8,] then, by Theorem 2.1,

re<<r)sn(t) or r=r@)=r(l), telq,B],

in the maximal or minimal case respectively. That is, the graph of r lies
in the set §, (or 8_), and hence » can be continued to all of [e, 8,].

COROLLARY 2.1 (Lakshmikantham [15], Theorem 3.1 (i)). Let @, @ by ¢
be continuous non-negative functions on J = [a, f, and f, h be conmmwus
non-negative functions on RY = [0, oo) with f strictly imcreasing and h
non-decreasing. In addition, suppose k(t, s) is continuous and non-negative
on Ty ={(ts): a<s<t< B}, and that w(s, u) is non-negative and contin-
uous on J X Rt with w(u) non-decreasing. Define

C(t) = maxec(s), HK(t,s) =maxk(o, s) (a8 << f).

. ags<st s<Kot

If
¢

(16) f(-'v ) <o +d)k (o) + [ B2, s)w(s, 2(s)ds), ted,

then |

(16') w(t) <f7 o) +dOB{FE (L, OO, tedy,

with 1 (t; 110) = 71(2y ¥, 710), where vy = r1(t, T, 110) is the mazimal solution of

— =K(T, t)w (?,f_l [“'(t)'i‘b(t)h(ﬂ)]); 7, (a) = 7';0;

existing on some- [a, f,] = J; < J,.
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Here it is assumed that J, = J, is chosen so that the right-hand
gide of (16) is defined. We shall actually prove a slightly better conclusion
than (16°). In order to apply Theorem 2.2 we note that (16) implies

t
(17)  flam) < e +bOh{e()+ fI((t,s)'w(s,m(s))ds), ted.

The functions H, W defined by
H(t,v) =b@)h{c(t)+v), W(,s, w) = I (t, 8)w(s, u)
are continuous on J x R*, Ty, x R* respectively, with H (v), W(t), and

W (%) non-decreasing and W > 0. Now restrict { to a subinterval J' = [a, f']
of J chosen so that
a(t)+H(t,v) = a(t)+b()h(c(t)+v) ef(I), ted, 0<vDb,
for some constant b > 0. (This is, of course, an unstated hypothesis of
[156].) Let » = »(%, T, a) be the maximal Solution of the system
ay

(18) = = K(T,hwlt, o) + bW Ao +]), () =0,

to which (5) reduces. If we apply Theorem 2.2 (i) to (17), with J replaced
by J'y K =1 = R*, we obtain

) s <fa@)+DWA () +F@)], a<i<hy,

for some B, with [e, $,] = J’. To see that this estimate is better than
that in (16°), observe that r,(f, T) =7 (t, T, C(T))—O(T) satisties the
sSystem

—5 = E(T, 0w{t, {7 [a() + )1 (C(T)+7)]),  rola) =0

for a <t < T < By. Sinece o(t) +r < C(T)+r tor a <t << T, it follows that

E (T, tyw(t, £~ [a(t) + () (e(t) +7)))
< E(T, Hyw(t, £ [a() + b @M (C(T)+r]])
for a<t<IT'<p, and all > 0. By Lemma 2.1, it follows that g, > B,

and that (1, T, d) < 74(t, T) for a <t < T. Hence, on sotting ¢t = T and
changing notation, -#(t) < 7, (t, O(t)} — C(¢), from which it follows that

o{f) +F(t) < C(0) +F(5) < Fuft, O (1),
and.
F7 @) +008 (o) +FW)] < f[att) + b R(F 2, 01))],
for a <1< B,, proving the assertion.

Remark 3. There are alternative versions of this corollary which
one could obtain using the alternative hypotheses of Theorems 2.2 and
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2.3. Similarly, the other parts of Theorem 3.1 of [15] can be obtained
in greater generality from Theorems 2.2, 2.3. We shall not do so, but
instead shall obtain either better or more general versions of some of
the results in [4], [12], [2], [25] contained in Theorem 3.1 of [15], and
of those in [8], [9].

3. Bounds for solutions of a differential equation. In [15], V. Laksh-
mikantham obtained an upper bound for solutions of the initial value
problem

dr
) = = kg +o),  ria) =10,

as a corollary of a variation of parameters formula of a somewhat more
general equation. Unfortunately, the domain of validity for the bound
ig incorrect in [15], and indeed is not discussed adequately at all. We
deal with this problem in

THEOREM 3.1. Let o and I be continuous and of one sign on an interval
J = [a, B, and let g be continwous, monotonic, and never zero on an interval I
,containing a point vy. Suppose that either g is non-decreasing and k>0
or g is non-increasing and k< 0. If v is any solution of (1) ewisting on a
subinterval [a, B,) = J, then

t t
(1) r 5672 [ kds+G(ro+ [ ods)], a<t<$p,
where < or = holds according as 0> 0 or o< 0, and

G¢w) = [dylgly), wel (uoel),

B, =min(B,, fs), Ba = min(uy, u,)
with

%, = Sup {ueJ:ru—]-fadseI},
-
%y = Sup {ueJ:fkds-l—G(ro+fods)eG(I), astgu}.

Moreover, if o = 0 and k, g have the same sign (6 < 0 and &, g have the op-
posite sign), then (1) has o unique solution, f; = B,, and we also have

14
(2) ¢ f ods +@ (7o) < 7(1) (@ [ds+6G(ro)) > r(2))

Jor a<t<B,.
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Proof. We first prove the results when ¢ > 0. In this case & is in-
creasing, and we shall show that if # is any solution of (1) on [e, f,), then
for a <t < B, we have

(3) fkds+a< ) S6E t))<f/cds+G(ru-{—fads)

‘where < > holds according as o> 0 or ¢ < 0. Note that when ¢ > 0
and kg > 0 or ¢ <0 and kg < 0, the left-hand inequalities of (3) can be
4
written in the form (2). For, in all such cases, @(7,) + _f kds lies between
¢ ¢ a
G(r,) and @(ro+ [ ods)+ [ kds both of which points lie on the interval
G(I).
To prove (3) when g > 0, observe that by (1), for a <t < /?1,
r(t) Sro+ f ods,

where < or > holds according as k < 0 or k> 0. Since ¢ is non-increasing
for <0 and non-decreasing for % > 0 it follows that in either case,

¢
glr®) = g {ro+ [lods).

For any solution, r(f), of (1) we also have

= T(s) +

g
glr(s))’

§o integrating over [a, ?], we obtain

G{r(t) s fkds—}-f ,

a 'ro"l- fadm)

where < or > holds according as o = 0 or ¢ < 0. This reduces to the right-
hand inequa,htles of (3). As for the 0th.e1, it follows in the same way from

S k(s),

where > < holds according as ¢ >0 or o< 0.

We note. th;nt a8 in [4], the bounds in (1'), (2), (3) are independent
of the choice of u, € I. For simplicity, we take u, = 7, in the rest of the
proof, so that G(r,) = 0. From now on, we deal (primarily) with the case
that either (a) 0 >0, k> 0, g > 0 and g is non-decreasing, or (b) o< 0,



Lalkshmilantham's comparison method 197

k<0, g<0 and g is non-increasing. Following Lakshmikantham [15],
we congider the initial value problem
v g(v5)o (1)
(4) ' dto = : i y  Do(a) =1,
9{G " [G(vo) + [ kds])

It was shown formally in [157] that if v, is a solution of (4), then the function
r defined by

t
(B) r(t) = G671 [G(vo(t))-l- fkds]'

is a solution of (1).

We first prove that all solutions of (4) exist on [a, 8,). (This is true
even if ¢ > 0-and %, g have opposite sign, or ¢ < 0 and %, g have the samo
sign.) To .obtain this result from Lemma 2.1, we set

F(t,r) = g(r)a(t)/g{G‘l[G(?‘)J.rf ’“ds]}

and use the comparison equation

ar,
(#) = =al), @) =n,

¢
which has the unique solution 7, (f) = r,+ f ods for all ¢t > a. The asserted

existence will follow provided F is continuous on a domain D such that

t
8y ={(t77’): a <t < By, "o<r<7'0+f0d3} <D ifo>=0,
or

¢
8. ={t,): a<t<fo, nZr=rot [ods) =D it ¢<0,

provided that 0 << +F (!, ) < +o(t) for (4, 7) € §,. The continuity a.n&
inclusion relations are clearly satisfied for

¢
D ={t,n): G(r)+ [ kas e@(I)}.
Moreover, for (t,») € D, recalling that g > 0, one easily verifies that

¢
g (/g {66 () + [ kdsT} <1



198 P. R. Beesack

holds whether ¢ is mon-decreasing and % > 0, or g is non-increasing and
k< 0. Hence F(t,r)<o(t) if 60, or F(t,#)>o(t) if o< 0, proving
that all solutions of (4) exist on [a, f5)-

If v, is any solution of (4) then by Lemma 2.1,

t
To§”u(¢)§’"o+f0'd5’ = 74(t),

where < or > holds according as ¢ > 0 or ¢ < 0. Hence r(t) is well-defined
by (5) on [a, f;) and, as shown in [15] (or by direct differentiation), » is
a solution of (1). ‘

In cases (a), (b) we note that (4) has a unique solution on [a, ).
To see this, let »,, and v;, be the minimal and maximal solutions of (4)
and let r,, and r,, be the related solutions of (1) defined by (5). Since @
is increasing, it follows that #,,(t) < 75, (¢). Moreover, by (4),

’

Un(8) _ _0(8) vu(s) __ ols) '
g(”m(s)) g(rm(s)) , g(vM (8)‘) g(’rM(s))

Hence

e o(s)
G(”M(t))=!g(_rm(s)) cls}f Tt & — @(vy (1))

follows in both cases (a), (b). Since G is increasing, v,,(t) > v5,(?) and so
. (2) = v3,(), Proving uniqueness.

Let vy be the unique solution of (4) and let » be the corresponding
solution of (1) defined by (5) on [a, 8,). To prove that r is the only solution
of (1) on [a, B,) in case (a) wé show 4in this and the next two paragraphs
that r is the maximal solution of (1). To this end, let 7(¢) denote the maximal
solution of (1), with domain [a, 8,) say, and set

To(t) = G-I[G(r(t))—f kds|.
Tt follows from i;eduaﬁty (3), which holds with» = 7, thatfore <t < j,
0 =G'(ro) <G(7(t))—fkds <@ ro—l-:jj ads).
Since G(I) is an interval, 7,(t) is therefore defined at least for a < ¢ < ;.
By direct differentiation, %, is a solution of (4); whence ,(t) = vy(f) by

uniqueness. But then

11 ¢
P(8) = G| 6(a,(t)) + [ kds| = G“I[G(vo(t)) + [kds|=r(®)
. J Jhe
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for e <t < By, so that » coincides with the maximal solution of (1) o
[a, B,) at least.

Lot = be the supremum of values % eJ such that # is the maximal
solution of (1) on [, u]. If = >> B, we are through, so we assume 5, < 7 < ;.
The solution # is maximal on [e, z] and if 7(v) = 7,, we may apply the
preceding analysis to the initial value problems (1), (4) with the new
initial econditions 7 (r) = 7y, v(7) = 7, and to the new initial value problem
(4') with », replaced by Fy; in (4), @ is also replaced by &, where

u
= [dylgly), wel.
o
We obtain a solution 7 of the new problem (1) which is maximal on some
interval [7,.r+81 and bhaving

¢ i
F(o) = G @[5 (0)+ [ bds] =G~ @ (oo (1) + [ Feds]
for t € [z, v+ 6], Where 7,(t) is the (unique) solution ' of
7 = @) op{F A+ [Rasl),  wute) = .
We now show that 7(f) < r(f) on [7, v+¢] whence, since 7 is maximal,
r(t) = 7(t) on [z, 7+ ¢]. But then r is maximal on [a, 7+ ¢], contradicting

the definition of + and proving that = > f, must hold in case (a).
To prove that 7(t) < r(?), it suffices to prove that

11 ]
(6) Ho(1)) + [ kds < G{og(1))+ [Fds.

By (4), () and (1), we have

wis) o) v (5)

TR0 B TP
and similarly,
| n(s) ol
g(@a(s)  g(Fs)
Hence,

a(s)

T —fkds—l—G(r(t))—- (7)),

G(’Uo(t)) —G("’o(")) f (,,,(

g

(8)
o) %

g

i
6 (o) —6(7) = |
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Since 7(s) < 7(s) certainly holds and g is non-decreasing, ¢ > 0 in case (a),
it follows that '

:
G(ﬁo(t))—-G‘(Fo)QG(vo(t))—G('vo(v:)) = —f}’cds—i-G(r(t))—G(?o),

or
[1
G (3,() + [ Tds < G (r(1))-

By (5), this reduces to (6).

In the same way, one shows that # i3 also the minimal solution of (1)
in ease (a), and hence that (1) has a unique solution in this case. Similarly,
in case (b) the solution » of (1) defined by (5) on [a, f,) is both maximal
and minimal, hence the unique solution of (1).

Finally, if ¢ < 0 we replace k, g in (1) by &, = —k, g, = —g, and
note that the hypotheses of the theorem apply to %,, g, and o with g, > 0.
All of the existence and domain conclusions now follow. Moreover, s0
do inequalities (3), with % replaced by %, and G by G,, where

¢w) = [ dylg,(y) = ~G(w), G0) = G (—0).

These inequalities reduce to (3) as stated, completing the proof of the
theorem.

Remark. Under certain circumstances, a better (but more compli-
cated) bound than (1’') may be obtained. To illustrate, we consider only
the case that o, k, ¢ are all non-negative and g is non-decreasing. In this
case, (1) has a unique solution 7 = r(f) on [a, 8;) and from (1), '

¢
r'(s)

)] > o) = lrte) > @t [ e,

8O
¢

r(t) > GG )+ [Rds]  for 1€ [a, Ba).

Then )
r(s) (s) ) 8 \
g(r(s) Fe(s) + ) < k(s)+o(s)/g {G ‘[G(ro)+a{kdn]1,

and integrating over [a, t] again,

(7 G{r@) <G(ro)+fkds +'f(a‘(s)/g{G“[G(ro)+_fkdw]})ds.
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It is easy to verify that this is a better bound than (1') if o (t) < %(2)g(re+
¢

-+ [ ods) on [a, f,). In the linear case, g(r) =r, if 7, > 0 the estimates

(1'), (7) reduce to

7(1) < (ro-}- j ads) exp ( f kds) =7, (%),

i 8
7 () < roexp (f chs +ro'1fq(s)exp(—~fkdw)ds) = 7,(1),

and the exact solution of (1) is
¢ 8
r(t) = {'r.,—l-fa(s)exp(—-fkdm)}exp(j’kdm).

In this c&se, ra(8) < 7y (1) if o(f) < rok(t)exp f I ds) for all ¢.

4. Direct applications of the main theorem. In this section we shal
use Theorem 2.2 (together with Lemma 2.1 o r Theorem 3.1 in some cages
to obtain extensions, generalizations, or improvements of some known
results.

ToeorEM 4.1 (cf. Bihari [4]). Let g be a continuous monotonic function
which is mever zero on an interval I containing a point w,. Let x, k be con-
tinuous functions on an interval J = [a, f] such that xz(J)< I and k does
not change sign on I. Let a €I amd

(1) (1) a—l—fk Vg (w(s)ds, ted.

If either g is non-decreasing and k> 0, or g is non-increasing and k<
then

(1) o(1) <G [G(a)+ [Rds], a<t<py
where G(u) E}‘dy/g(y), uel, and
Yo
t.
By =sup{ued: G(a.)-l-fk(s)ds eG(I), a<t<u}.

Moreover, the result remains valid zf s replaced by = in both (1) and (17).

Finally, both results are valid if f is replaced throughout by f , and [a, B,)
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18 replaced by (ay, fl, where
o, =int{ved: Ga +fk s)ds e G(I), v <1< B}.

As for the proof, it suffices to take
fl) =%, H(t,v)=», W(,s,u)=1k(s)g(w), K=R,

in Theorem 2.2 or 2.3 (or Remark 1, Section 2). The comparison equation
(5), Section 2, in this case is

dr
dt

and has the (unique) solution

= k(f)g(a+7r), r(a) =0,

7(1) =G‘1[G(a)+f‘kds],‘ a<t < fy.

The conclusion (1’) now follows from (4’), Section 2, since case (i) holds
there. ' '

THEOREM 4.2 (of. Gollwitzer, [12], Theorem 2). Let the functions
@, k be dontinuous, with k mon-negative, on an interval J = [a, f], and
let g be a fundtion which does mot chamge sign and has a continuous deri-
vative which is never zero on an interval I such that x(J) < I. Suppose
hat a is @ non-zero constant and g satisfies either (i) g 1is concave and g,
t have the same sign, or (ii) g is convew and g, a have the opposite sign. If
a+g7t(0) el and

11

(2) o) S a+g7 ([ o)g () ds), e,
then

[ i

(2") 2 () < a-{-g‘l[G“l(f kds)], a<t< By,

where G(u) = fdy/g[a-{—g“(y)], weg(l) =K, and
;
B =suplted: [hdse@(K)}.

If (i) or (ii) is replaced by (i') g is comcave and g, & have the opposite sign,
or (ii') g s convex and g, a have the same sign, then the result remains valid
provided < is replaced by > fm both (2) and (2'). Finally both inequalities

remain valid if f 48 replaced by f throughout and [a, B,) is replacsd by (ay, B,
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where
B
a =inf{teJ: fkdseG(K)}.
¢
To prove this, we take

flo) =2, H(@,v)=g""(v), W({,s,u) = k(s)g(w), K = g(I),

in Section 2. The comparison system is

dr
(3) o = Htglatg (N1, r(a) =0,

and by Theorem 2.2, (2) implies

a(t) < atgl(r(t), a<ti<py,

where r(f) is the (unique) solution of (3) on [a, #,). This reduces to (2').
The other parts follow in the same way from Theorem 2.3 or Remark 1,
Section 2.

'We observe that the hypotheses and (2) imply the existence of a
unique %, € I such that g(#,) = 0. One can show that if g satisfies hypo-
thesis (i) above, then either ’

(ia) ¢’ is non-increasing, ¢<0, 6 < 0, I has %, as a right end-point,
and ¢'> 0 on I, so g is increasing, or

(ib) §" is non-increasing, g>>0, a > 0, I has w, a8 a left end-point,
and g’ > 0 on I, 5o g is increasing.
Similarly, if g satisfies (ii), then either

(iia) g’ is non-decreasing, g < 0, > 0, I has u, as a left end-point,
and ¢’ < 0 on I, s0 ¢ is decreasing, or

(iib) ¢’ is non-decreasing, ¢ > 0, a < 0, I has u, as a right end-point,
and ¢’ < 0 on I, s0 ¢ is decreasing. '

In [12], Theorem 2, Gollwitzer considered case (ib) with I = [0, o0),
g(0) =0, g(R*) = R™ and, instead of (2'), obtained

(4) o(1) < g7'[g(a)exp (fkds)], a<t< B

In this case, f; = f is clear, and we show that (2') is better tha.n. (4).
To see this, make the change of variable ¥ = g[a+g¢~'(r)] in the right-
hand integral of the equation

t r(t)
[ kds =@(rt) = [ arjgla+g7'(r)]

0
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to which (3) is equivalent. Thi.: gives

gla+o~ (=M dy
f kds = G(r(t) = f {g'[g“(r)]/g'[a-l-g“(r)J}T-

o(a)
Since (ib) holds,

g'lg~ ()]

-1
yl[a’+g—1(,’,)] =1, and !][a-l—g (T(t))] > g(a)> 0,

80
!
[ kds = @(r@) <log{g[a+g7" r)]/9(a),

:
.g[a-l—g‘l(r(t))] < g(a)exp U chs),

14
ot g {6 [ )] = o~ (r(9) < oo @) exp [ k)],

proving that (2') is better than (4).

As the simple analysis leading from (3) to (2') suggests, we may
obtain a similar result for a broader class of inequalities. We merely
State the result as

THEOREM 4.3. Let =, &k be continuous functions with & non-negative,
on an interval J = [a, 1. Let g be continuous and monotonic on an interval I
such that (J) = I and g is non-zero on I except perhaps at an end point
of I. Let h be continuous and monotonic on an interval K such that 0 € K,
and let a be a constant such that a +h(0) € I. If g and h are both non-increasing
or both non-decreasing, and |

as(t)<a+h(f:}'c(s)g(w(s))ds), ted,
then ﬂ
w(t)<a+h[(}‘1(fkds)], a<i< fy,

where G(u) = [ drjgla+h(r)], v € K, and
1]

f, = sup {t ed: ficds eG(K)}.

THEOREM 4.4 (cf. Beesack [2], Theorem 2). Let @, &, by k be continuous
Junctions such that b > 0 and & does not change sign on an interval J = [a, B].
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Let g be continuous, positive, non-decreasing, subadditive and submultipli-
cative on an interval I such that (J) < 1, a(J) < I and b(J) = I. Suppose
@lso that the function h 1§ continuous and monotonic on an interval K such
that 0 € K and h(K) < I. If either (i) h is non-decreasing and % > 0, or (ii)
h is non-increasing and k < 0, and

4
(5) o(t) < a()+bWA([ k(s)g(e(s))ds), ted,
then )

4 ‘
) o0 <a®+o@M{E|[Rslg p@)ds+6 ([ s)g (o) as)]}

for a<t< B, where G(u) —j dylg(h(y)) for weK (w,eK), and B,

= MiN(%;, Uy, Uy, Uy) With-

1, = gup {u ed: fk(s)g(a(s))ds € K},

1y = SUP {u ed: G(f k(s)g(a(s))ds)+f k(s)g (b(s))ds EG(K)},
u, = sup{ued: a(t)+bHM(R) eI, a<t < u)

) t l :
R(t) = G-l[fk(s)g(b(s))ds+a(fk(s)g(a(s))ds)],
= supfued: b(Hh(R(t) eI, a<<t<u).

The resull is valid if < is replaced by > in (5) and (8') provided g is
now non-increasing on I, and conditions (i), (ii) are replaced by (i) h is
non-increasing and k > 0, or (ii') h zs non-decreasing and k< 0. Finally,

both of these results remain valid if f and [a, f,) are replaced throughout
by f and (a,, pl, where &, = ma,x('vl, Dy, Uy, Vy) with the v; defined in the
obmous way.
This follows from Theorems 2.2, 2.3 and Remark 1, Section 2, by
taking
fle) ==, H(,v)=b@t)h(v), W({,s,u)=k(s)g(u).
The comparison equation is

dr

(6) T

= k()gla() +dWR(], r(a) =0,
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and (B) implies that

(7) s(t) < at)+b(OR(r(), a<t<py,

where 7(t) is the maximal or minimal solution of (6) on [a, §,) according
as cage (i) or (ii) of Theorem 4.4 holds. Since g is subadditive and sub-
multiplicative on I,

(8) k()9 la(t)+b(0)h(r)] S k(1) g(a () +k()g (b)) g(h(r),

where < or > holds according as (i) or (ii) holds. We now apply Theorem 3.1
to the comparison system

dry

©) S =Eeg)e(he) +r@e(e), e =0,

to obtain, in case (i) or (ii) respectively,
(9) PO < E@E), o<t<By=min(u;, u,).

By Lemma 2.1, it follows that 0 << 7(?) < 7,(2) or 0 = r(f) = r,{f) in case (i)
or (ii) respectively, for t € J, = [q, §,) with §; = min(u,, u,). (For, t eJ,
implies (8) is valid for a <t < f;, 0 r<r(t)yor a<t < By, 0 = 7 = (1)
respectively.) Since % is non-decreasing in case (i) and non-inecreasing in
case (ii), it follows from this and (7), (9) that in both cases we obtain (5').

THEOREM 4.5 (cf. Stachurska [25]). Let the functions o, a, b, k& be con-
linuous and mon-negaiive on J = [a, §], let p # 1 be a positive constant,
suppose that afb is non-deoreasing and

(10) m(t)<a(t)+b(t)fk(s)w”(s)ds, e<t< B,

Then a

(10;) () < a(t)/ {1—(p —1) [a(t) b ()P~ f kbpds}""’“’, et < .ﬁl,
where B, = B if 0 <p <1, and .,

§
B, =supfted: (p—1) [a(t) ()1 [ kb"ds < 1}

if p> 1.
This follows from Theorom 2.2 with
C f@)=a, H(t,0) =btw, W(E,s,u) =k, I=K=DR"
The comparison equation is
dr

(11) 5 = k() [a(t)+b(@)r]?, r(a) =0.
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To obtain an upper bound for solutions of (11), we write

dr a(T) P
— < » : .
dw\k(t)b (t)[b(.’l‘) —|-'r:|, e<IKST LB, 720

By direct integration and Lemma 2.1, the solution of this elementary
differential inequality has

¢
a(T)+b(T)r(1) < a(T) {1—(p—1) [a(T)/b(T)]P~ [ kb7as}E77,

Setting ¢ = T and changing notation, the conclusion (10’) now follows
from Theorem 2.2. .
In the case p > 2 is an integer, Stachurska obtained

i
(10M) e <a)/ft—(p—1) kba""lds}”(p—n, a<t< By,

where f, is the least value of ¢ such that {...} = 0. It is easy to see that
‘a/b non-decreasing implies that (10’') is better than (10°).

5. Some results of Deo and Dhongade. By using Theorem 2.2 twice
we may also obtain (generalizations of) results of S.G. Deo and U.D. Dhon-
gade [8], [9]. In these papers a class & of functions g was defined which,
among other things, satisfied the condition

@ com<o(y), wm0,0>0.
The authors did not notice that (1) actually implies that g(u) = g(1)u
for u > 0. For, setting v = « in (1) gives g(u) < g(1)w for % > 0. On the
other hand, setting v = 1 implies g(1) < vg(1/v) forv >0,0rg(l) << wlg(u)
for u > 0.

To avoid trivialities, we may replace condition (1) by the condition

(2) %—g(u)gg(%) for u >0, v>1,
and observe that (2) implies
(3) guw)<glu, w=l; glu)<rgw), u>0, r= 1.

The second of (3) shows that (2) is compatible with the subadditivity.of g.
‘We shall require the following two lemmas.

LEMMA 5.1. Let f be continuous and strictly increasing on [u,, oo),
where > 0. If f(u)ju is non-decreasing for w > uq, then o

(4) o' f o) < fH(@a™h)  for af(w) <@, a=1.

7 — Annales Polonici Mathematiel XXXV.2
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For, setting u = f~*(z), v = f~ (za™?), we have u, < v < w, 80 v7'f(0)

%~ f(u) which reduces to (4).

LevMua 5.2. Let g, b be continuous, with b non-desreasing on [0, o)
and 0 < h(u) < %, 0<g(h w) < u for w>0. If

(5) G(u) = f dylg(h(y), w>0 (ug>0),
%o
then
(5" {G"’(m—}—G @)} < ad® for =0, a>0.
If hiw) > u and g(h(w)) > w for w > 0, then (5) holds with < replaced by >

For ¢!, with @G, is stnctly increasing so that #+G(a) = G(a) nnphe.s
Gz +G(a )> a> 0, and hence

G w+Ga)} <G o+G(a), #=0,a>0.
Hence it suffices to prove that G~*(z+@(a)) < e, or that
o(x) = G(ae®) —o—G(a) =0 for >0, a> 0.
Thig follows at once from the fact that ¢(0) = 0 while
o' (@) = {ac®[g(h(ae®))} —1>0 for all .

Under the alternative hypotheses all inequalities are reversed.

CoRrROLLARY 5.1. Let f be continuous and strictly increasing on [0, o0)
with f(u) 2= u for w > 0, f(0) =0, and let g, be continuous on [0, co) with
0 < g.(u) < f(u) for w> 0. If

1%

(6) B (u) = fdy/gl (f—l(y)) , iu >0 (@9 > 0),
then g
(6") (Fof o+ Fi(a)] < ae® for >0, a>0.

This follows from the lemma by taking h = f~%, g = g,.

The following theorem includes Theorem 1 (for f(z) = @, h(u) = u,
g:(w) = w) and Theorem 2 (for f(#) = @, g,(%) = w) of Deo and Dhongade
[8].

TaroreEM b.1. Let x, a, 7c, I, be non-negative continuous functions on
J = [a, B], and let a be non-decreasing on J. Let g, h be continuous non-
decreasing functions on [0, oo) such that g is positive, subadditive and
submultiplicative on (0, oo) and h(u) > 0 for uw > 0. Let f, g, be continuous
on [0, oo) with f stricily increasing, f(u) = u for w > 0, f(0) = 0, 0 < g,(u)
L f(u) for uw> 0. If

y t
(7 .f(m(t))<a(t)—[—hU'k(‘?‘)‘g(m(s))ds)+f701 gl(m (s))ds, ted,
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then

t 11
(1) @) < (Fyof)™ (flclds.+E1{a(t)+hoG"1[f k(s)g (B(s))ds +

+G(fk(s (a(s) B )ds)]})

t
for a <t < By, where F, is defined by (6), B(t) = exp([ k,ds), G is defined
by (8), and ¢ :

¢ ¢
B, = sup {t eJ: G(f]c(s)g(a(s)E(s))ds) + [k(s)g(B(s)) ds eG(R"‘)}.I
If a(t) = a > 0, then g need not be subadditive, and in this case
(7 @) < (Fiof)” {fklds+l?’1 la+hoa;? (fic ))ds)]},

e <t < By,
where G,(u) = [ dyjgla+h(y)], u>0, and
0

t
B, = sup{t e J: [k(s)g(E(s))ds e G, (R™)}.

L]
Proof. Denote the first two terms on the right-hand side of (7) by
a,(t) and apply Theorem 2.2 with

H(t,v) =0, W(,s,u)=k(s)g:(u), I=K=[0,00),
noting that f(I) = I. The comparison equation (5), Section 2, is
dr

(8) — = a0 () +r1, (@) =0,

and if » = r(¢) is the maximal solution of this equation, then for ¢ in the
domain of r,

(9) 2(t) < f e, () ()]

Since @, is clearly non-decreasing, .
() < Ty (t)giof o (TY+7(@)], e<t<T.

Now, F,(u)—>oo a8 u—oo since g, (f~* (y)) < ¥, hence solving this inequality
it follows from Lemma 2.1 that

11
Ty (a1 (T)+7(0) < Py (ay(T)) + [, ds,

1
a,(T)+7(1) < P {Fl(al(T))—{-fklds}, a<t<T< B,



210 P. R. Beesack

F

Setting ¢ = I' and changing notation, (9) gives

¢
2() < (Fy0f)H [hds + 7y (a,(1)}), a<t<py
or -'

(10)  (Fyof) (@ flclds l—I‘l[a, +h(fh g(w )ds)] ted.

Again we apply Theorem 2.2 with f replaced by I, of,
H(t,v)= Fl(a(t)—l—h(fv)), . W, s,u)=k(s)g(u), I=K = [0, 00),

¢
noting that [ %,ds+ Fy(a(t)+h(v )eF (f(D) = I, (R*) for ted, vek.
The comparison equation is now
P
dr
(8) = =kt )go (Fyo )| [Ty ds+ Fy(a()) +h(r)], r(a)=0,

and for ¢ in the domain of », we have
4
(9") (Frof) (w(1) < | Txds+ T [a(t) + R (r(®)],

where r is the maximal solution of (g’). By Corollary b.1, for arbitrary
>0 we have

, .
(If’lof)‘l[f-klds + T, (a(t) + s-l—h(r))] < B() [a(t)+e+h(r)], ted.

By continuity this also holds for ¢ = 0. Since ¢ is subadditive and sub-
multiplicative, it follows from (8’) that

; |
?:g B(t)g (a(t) BE) + k(D) g (B(1) g (h(r).

By Theorem 3.1, the initial value problem'

dr,

7 = k(g (B®)g(h(r)) +E@)g(a(®)B(2), ri(a) =0,

has a unique solution defined on [a, £,) and satisfying
(11)- () < {fk 8)g (B s))ds+a(fk )9 (a(s) )ds)}

By Lemma 2.1, r(f) < ,(f) for ¢ e[a, f;) whence (7’') follows from (9)
and (11).
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In case a(t) = a > 0 the pi-oof is unchanged down to (10); also (8')
and (9)" remain unchanged with a(t) = a. The auxiliary comparison
equation is now replaced by

dr v
— = kOg(BO)gla+h(r)], () = 0.

This equation has the unique solution
¢
ra(t) = 627 ( [ k()9 (B(s))ds), @ <E< Bay

and the conclusion (7'/) again follows from (9') and Lemma 2.1.

Theorems 4 (for f(z) =@, h(u) = u, a(f) = a) and 5 (for f(») = )
of Deo and Dhongade [8] are included in the next result (modified to
~account for the remark concerning (1), (2)). -

TaroREM b5.2. Let , a, k, k, be non-negative continuous fumctions on
= [a, B] such that a.is non-decreasing with a(t) > 1. Let g, g, h be contin-
uous non-decreasing functwns on [0, o) such that g is positive, subadditive
and submultiplicative on (0, oo0), g, is positive on (0, co) and satisfies com-
dition (2), and k(u) > 0 for u > 0. Let f be continuous and strictly increasing
on [0, co) with f(x)/z non-decreasing for » > 0, f(0) = 0, and suppose that

t y
12) flz@) < a(t)—i—h(fk(s)g(m(s))ds)+fk1(s)gl(m(s))ds, ted.
Then

(12) a@) <A (){()+hoe-1[fk )9 (4 (s))ds +

¢
+6( [5(s)g(als) 4 (s)ds)]},
for a<t< B, where A(t) —(I'lof —1[F.(1) ftklds], G and F, age

defined by (5) and (6), and
¢

B, = sup {t ed: fk(s)g(A(s))ds +G(f7c(s)g(a(s)A(§))ds) EG(R+)}.

If a(t) = a1, then g need not be subadditive and in this case,
(127 e <4 {athod| f hs)g(A@E)ds)}, e<i< B
where @, is as defined following a(7’f)_, and

i
By = sup {t ed: fk(s)g(A(s))ds eGa(R"‘)}.
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Proof. To simplify the proof, we begin by writting (12) in the form
w(t) < fau(t) f o ()0 (w(s)) ds]
noting that :ohe hypotheses on f J.mply that f(Rt) = R*, and (by Lemma

5.1) that f~! satisfies condition (2). Since a,> 1, @, is non-decreasing,
and g, also satisfies condition (2), we have

¢
; 5) _
u(t) = —al(t) <7 1{1+fk ( 1(3))d8} =f 1{1+!kl(s)gl(u(s))ds},
or
[
(13) flu@) <1+ [ky(s)gi(u(s)ds, ted.

Now apply Theorem 2.2 to (13) with

H(t,o) =v, W(t,s,u)=k()gnw, I=K=I0,c).
It follows that
(14) w(®t) <fH1+r )],

where r = r(?) is the maximal solution of

(16) =k ()giof (1 +71), r(a) =0.

dt
This system has the explicit solution

r(t) = F;l[fkld.s:+F1(1)]—1, ted.

(Note that g, (u) < g, (1)u and f~*(u) < f~*(1)% by (3), whence F, (R*) o R*
follows.) By (14), ' ‘

i
olt) _ o | _
o, (1) < (Fyof) 1[!7‘31‘134'1711(1)] = A(t),
or
¢
(16) 2(t) < A(t)a(t) +A(z)h(fk(s)g(m(s))ds), ted.

Agé,in we may apply Theorem 2.2 with
f@)=2, H(t,v)=A)h(v), W(t,s,u) =k(s)g(u), I=K =[0, c0),
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to obtain

(147) @ (1) < A (1) a(t) + A (B)h(r (1))
for ¢ in the domain of 7, where » = r(¢) is the maximal solution of
(15') % = k() g[A@)a@)+A@DR(M)], 7(a)=0.

Since g is subadditive and submultiplicative, and % > 0,
dr
57 S kg (40)g(h() + (D) (a()4 (1)

Precisely as in the proof of Theorem 5.1, with B replaced by A4, it follows
that ' A
3 t

r(t) < G—l{fk(s)g(A(s)) ds+@ (fk(s)g(a(s)E-(s))ds)}

a a

for a <1< By, s0 that (12°) follows from (14'). |
- If a(f) = a>1, the proof is unchanged down to (15’). Now, using
only the fact that g is submultiplicative, we have

d
_dggk(t)g(A(t))g[wh(r)J-

This inequality can be solved explicitly and Lemma 2.1 gives
t ,
r(t) < G ([R(e)g(A(s)ds), a << By
a

The conclusion (12'’) follows from this and (14') — with a(f) = a.
Remark 1. An application of Corollary 5.1 to (10) would give

¢
o(t) < E(t)a(t)+ E(t)h(fk(s‘)g(m(s))ds), ted,

which is (16) with A replaced by E. Proceeding now as in the proof of
Theorem 5.2, one would obtain

(17) (1)

[ 4
< B(t) {a(t)+hoa-1[fk(s)g(E(s>)ds+G(fk(s)g(a(s)E(s))ds)]}.

Inequality (7’) of Theorem 5.1 is, however, better than (17) according
to Corollary b5.1.
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Remark 2. If f and g, satisfy the hypotheses of Theorem 5.1 (i.e.,
Corollary 5.1), then A(f) < Z(f). Hence (7’) and (12’) are not readily
comparable when f, g, satisfy the hypotheses of both Theorem 5.1 -and
Theorem 5.2, although both are better than (17). Under the hypotheses
of Theorem 5 2 it is easy to prove that

t
(18)  A(t) = (F,of)” [fklds—i—If'l(l)] exp (9'1 )fklds) = [B()]V,

We note that Theorem 5.2 always gives a better bound than Theorem
5.1 when f(x) =, g,(2) = y2 with 0 < y <1. On the other hand, the
hypotheses of Theorem 5.1 are less restrictive than those of Theorem 5.2
except when f is linear.

Remark 3. Under certain additional hypotheses on %A and g we
may obtain somewhat simpler (but larger) upper bounds than those
given in Theorems 5.1, 5.2. In fact, if g, h satisfy the conditions of Lemma
5.2, then the bounds (7'), (12') imply that

¢
_ m(t)gE(t){af(t)—{—exp( fk(s)g(E ds) fk g(a(s)B )ds}

4
o) < A (0 {at)+oxp( [ o) (4(0)ds) [ Bog(ae)4(0)as),

respectively. An additional simplification of the last inequality may be
made using (18).
The inequality !

(19) (1) a+f {k(s)g (z(s)) +Fr(8)(s)) ds, ted,
dealt with in [8], Theorem 1, and included in Theorem 5.1 (for f(z) = %,
h(u) = u, 9:(w) = w, a(t) = a) may also be dealt with by a single appli-

cation of Theorem 2.2. Under the hypotheses of Theorem 5.1 for the
case a(t) = a inequality (7'') implied by (19) becomes

4
(19") w(t)sE(t)G*l[G(aH f k(s)g(B(s)ds|, a<t<pa
4 u )
where I (1) = exp( [ kyds), G(u) = [ dy/g(y), u> 0 (u,> 0), and
a o
B, = sup {teJ: G(a)+ f Ic(s)g(E(s))ds EG(R*")}.
‘We now proceed as suggested following (19), and obtain a result

which is better than (19') in some cases at least, and with weaker hypo-
theses.
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THEOREM 5.3. Let the functions w, k, k, be continuous and non-negative
on an interval J = [a, B, and let ¢ be continuous and non-decreasing on
I = [0, oo) with g(u) > 0 for u > 0. If = satisfies inequality (19) for some
a> 0, then

12

(19")  @(f) <G [G(aE(t))+E(t) f Ic(s)(E(s))."lds],. a<t<j,
where G is as defined following (19';, and
B=suplted: GaB()+E) fk () (B () ds € ¢(RH)}.
Proof. In Theorem 2.2, take
f@) =, Hto)=v, W(,su)=kE)g)+kEu, K=,

The comparison system is

d
== = bgla-tn+hb){atr), r(a) =0,
or with u = a+r,
a
(20) — = k()g(w) + (),  ule) = a.
Moreover,
(21) 2(t) < a+r(t) = u(l)

for ¢ in the domain of the maximal solution «(f) of (20). To obtain an
estimate of « (and of its domain) multiply (20) by the integrating factor
(Z(2))™* and set v = (E(t))~". Then (20) is equivalent to

(20 — = k(B gpB0), v(e) =a.
For et T,

k(1) ( ) g(fvE ®) < (E(t))"g(vE(T)),
and the system

& k@O BD), ) =

has the unique solution
r(t) = 67 |G (aB(T)) fk lds] a<t<T < B.

Setting ¢ = T and changing notation, (19"’) follows' from Lemma 2.1, (21)
and the above.
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In case g(u) =w? and o« =0, (19’) and (19") reduce to

{
0 (t) < aB (1) {1-a | k(s)Eg(s)ds}—l =z, (1),

¢
2 (1) < aB (1) {l—aE'z(t) | ls(s)(E(s))-lds}" = 2,(1),

respectively. We have ,(f) < @,(t) for all ¢ in their common domain if
4> 4, k(s) =8, ki (s) =1 for example, while z,(f) < @,(¢) if %, %k, are
both constant.

Remark 4. If, in addition to the hypotheses of .Theorem 5.3 we
also assume that g satisfies condition (2), then (19) implies

¢
{19""") o(t) <B(1)G [Ga)+ [ kds|, a<t<p,

4
where ' = sup{teJ: G(a)+ [ kdseG(RY)}. For, since H(t)>1, (20"
and condition (2) imply that

av

= Shtg), old =a.

Hence by Lemma 2.1,
. 14
o(t) =u() (B <67 [@(a)+ [kds|, a<i<f

Inequality (19’") now follows from (21). If g(u) > 1 for w > 1, (19'")
i8 clearly better than (19').

Our final result of this section includes two more theorems of 8.G. Deo.
and U. D. Dhongade [8], Theorem 3 and [9], Lemma 2.

"TEEOREM 5.4. Let the functions o, a, b, k be continwous and non-negative
on J = [a, flwitha>1,b>1 and a non-decreasing on J. Let ¢, h be con-
tinuous, non-negative and non-decreasing on I = [0, oo) with g(u) > 0 for
u > 0. Suppose that g, h both satisfy condition (2) on I and that g is sub-
multiplicative. If

1
(22) w(t) < a(t)+b(t)h(fk(s)g(a;(s))ds), ted,

then

¢
(22) @) <a®+dWho6( [ K(s)g(b(s)ds), a<t<py,
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where G, (u) = fdy/g[l-l—h(y)], >0, and
B =suplted: fk(s)g(b(s))ds c @, (RY)|:
Moreover, if b(t) = 1, g need not be submultiplicative and in this case,
¢
(22" 2(t) < a(?) {1+hoG;‘( f k(s)ds)}, a<t< By,

where B, = sup{teJ fkds eG‘l(R")}

Note. In [9], (22’ ) was proved with the first term on the rlght-ha.nd
side replaced by a(t)d(?). The hypothesis a(t) > 1 was omitted but the
assumptions on g, » implied that these functions were linear. (See remarks
at (1), (2).)

Proof. In order to simplify the proof in applying Theorem 2.2, we
note first that (22) and the hypotheses on a, g,  imply that

a(t) .
ult) = 5 g <100 f bs)glu()ds), ted.
The rest of the proof is more or less as in the first part of the proof of
Theorem 5.2, but with f(m) = ¢ and H(i,v) —‘b( t)h(v). The comparison
equation is now

i
= = EOII+IOIM],  T(a) =0,

di
and this is ’domma,ted by
ar '
_dwtl— =Lk g(bM)glL+h(r)], ri(a) =0,

which has the unique solution

¢

7 (1) = Gfl( fk('s)g(b(s))ds), a<t< By
Since ’
(23) w(t) < 1-+b(t)(r(),

the conclusion (22’) now follows from Lemma 2.1,
If b(t) = 1, the comparison equation can be solved explicitly to give

r(t) =.G;1(ft-lgds), a<t< B,

and this, with (23), implies (22"').
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Remark 5. The case b(t) =1, h(v) = v corresponds to Theorem 3
of [8], and in this case (22'') can be written in the form '

a:'(t)ga(t)G'”‘[G(l)-i- ficds], a<t < f,

where G(u) = [ dy/g(y), ©> 0 (u, > 0), and

U

]
B =supfted: G(1)+ [ kds c@(R*)}.

This follows from the fact that @ (u) = G(u+1)—6G(1).

Remark 6. The bound (22') is mot readily comparable with the
bound (5') of Theorem 4.4 (i). By applying Theorem 2.2 directly to (22),
still other bounds may Dbe obtained under a variety of hypotheses. We
merely state two such results:

With the comtinuity and mon-negativity assumptﬁoné 'of Theorem 5.4,
suppose that a>1, b> 1, g is submuliiplicative, and g, b are both non-
decreasing. Then (22) implies

¢
24) alt) < o) +d()ho6r* | [k@g(a)gb)ds), a<i<p,

where @, is as in Theorem 5.4, and

¢
B, = sup {t ed: flc(&)g(a(s))g(b(s))ds EGI(R"')}.

(Inequality (24) is clearly better than (22’) when ¢(a(s)) <1, but not,
in general, when goa is large.)

With the continuity and non-negativity assumptions of Theorem 5.4,
.suppose that b= 1, g is subadditive and satisfies condition (2), and g, h
are both mon-decreasing. Then (22) implies '

¢
(25) m(t)ga(t)+b(t)hoa-1[fkbds+a(fkbg(u/b)ds)],
| ’ o <1< fay

whers G(u) = [ dylg(h(w)), u> 0 (ue> 0) and
° L 11
B = supfied: [ kbds+@( [ kbgofp)ds) e G(R*)}.

If ¢ is also submultiplicative, both bounds (26) and (5'), Section 4 apply.
Since bg(a/b) = g(a) by (2) we see that (5’) is the better estimate whenever
gd)y<b for b> 1. '
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6. An inversion procedure. We conclude with some observations
concerning pairs of inequalities of the form

(1) Flo®) < (Tx) (1), ted,
(2) 2(t) < (T) (1), ted,

where f is continuous and strictly monotonic on an interval I > z(J),
and T is an operator on O(J), the class of continuous functions on J.
For each inequality obtained as a consequence of (2), one may obtain
a corresponding result from (1) merely by writing (1) in the form

1" u(t) < (Tyu) (), ted,

where %(t) = f(#(t)) and Tyu = (Tf~")u for u e C(J). We illustrate by
obtaining the following corollary of Theorem b5.4.

THEOREM 6.1. In addition to the hypotheses of Theorem b.4, let f be
continuous, strictly increasing and supermultiplioative on I = [0, oo) with
f(u)/u non-decreasing and positive for w > 0 and f(0) = 0. If

(3) fla) < a@)+bnh f k()glw(s)ds), ted,
then z
3) e <f{al) +ebt)hol( [ k(s)gof (b(s))ds)},
a << By

where @l(u) = f dylgof ' [14h(y)], %> 0, and
0

¢
B, =sup{ted: [kis)gof (b(s) ds e G,(RH)}.

The result follows from Theorem 5.4 and the above remarks on
noting the following facts. The hypotheses on f, g imply that § = gof™
is continuous and non-decreasing on I; observe that f(w)> f(1)u for
w > 1 so that f(I) = I and the domain of § is I. Moreover, g(u)> 0 for
w>0, § is submultiplicative (since f supermultiplicative = f~* sub-
multiplicative), and g satisfies condition (2), Section 5 (on using Lemma 5.1).

We note that the main Theorem 2.2 i invariant under this process.
That is, if the result of Theorem 2.2 is assumed only for the case f(z) = w,
and the above process is applied to this case, the result is precisely the
general Theorem 2.2 as stated. On the other hand, some of the results
of Section 5 are not so invariant. This can be seen at once by noting that
the functions gof™, g,0f ! do not appear uniformly in the conclusions.
As an example, we illustrate by applying the inversion process to Theorem
B.1.
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~ Let w, a,k, Ky, g, b satisfy the hypotheses of Theorem 5.1, and let gy
be continuous on [0, co) with 0 < g;(u) < u for w> 0, and

¢ ¢
(9 o) <a®)+{ [k(s)g(0(s)) ds) + [Ru(s)gs(0(s))ds, ted.

By Theorem 5.1, with f(z) = w’, it follows that

¢ ¢
4y a@)< Ffl[fklds+F1{a(t)+hoG‘1[fk(s-)g(E(s))ds+

t
_|_G(fk(s)g(a(s)E(s))dS)]}], a<t<py,

where F, () fdy/gl(J), w >0 (1 > 0), G(u fdy/g(h (%)), w> 0, and

pr =suplie J: G(fk(s)g(a(s)E(s))ds) +fk(s)g(E(s))ds e G(R)}.

One can verify that if f is continuous and strictly increasing on R*
with f(0) = 0, and f is both superadditive and supermultiplicative on R*,
and if now g, satisfies 0 < g, (v) < f(v) for v > 0, then the functions § = gof™"
and §, = g,0f ! satisfy the hypotheses listed above for (4) (along with w, a,
k, k., b as above). (The superadditivity of f implies that f(#) oo ag £-—+cc.)
Applying the above result to

!

14
(5)  flam)<s@)+h( [ks)g(n(s)ds)+ [ky(s)gi(n(s)ds, ted,

a

or
4

u(t)ga(t)quh'(f (8)§ (ue(s )ds)-l—f]cl (8)Gu(u(s))ds, ted,

we obtain

11 ¢
(5 () sf’loﬁ'l“[fic, ds+ Fy {a(t)+ ho G [1(s) (B (s)) ds +

ra(fumsemmeiall], a<e<s,

where ', @ and £, are defined as I, , @ and B, above, but with 9, 9. replaced
by § =gof* and §, = g;of "

In those cases for f, where both Theorem 5.1 and the above regult
applies, it is not clear whether the results are comparable.
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