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Abstract. Let » Q, be a series of homogeneous polynomials on C¥ with Q.(z) = ). ¢,2%,

v=0 la|=v
aeZ. Let S,:= Qg+ ... +Q, be the n-th sum of the serics, E a subsct of C¥, and {n} an
increasing sequence of positive integers. We say that a pair (E, {n;}) has A-Property if each series

o0
Y 0,(z) with {S, (2)} converging for every z in E has a positive radius of convergence. The paper
0

delivers a characterization of pairs (E, {n;}) with A-Property in terms of global extremal
plurisubharmonic functions and of related capacities as well as of the rate of convergence
»: = limsupn,,  /n; of the sequence {n;j. In particular, it is shown that if  is finite and {8, (2)}

j—~o
converges at each point z of a nonpluripolar set E in C¥, then the series converges in the ball
llz|| < «®, where a = o(E) is a capacity of E.

1. Introduction
Let
(1.1) Y 0.z) with Q2= ) cz2*, zeCV
v=0 la|=v

be a series of homogeneous polynomials of N complex variables. If N = 1 then
(1.1) is a power series,

(1.2) Yez, zeC.

It is the classical result due to Abel that if (1.2) converges at a point z, # 0
then it converges in the disk |z] < r = |z,|. About 60 years ago F. Leja observed
that, given any countable set E in C?, one can construct a series (1.1)
convergent on E but having no positive radius of convergence.

DEFINITION 1.1. We say that a subset E of CY has Abel’s Property if there
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1s a positive number R = R(E) such that every series (1.1) converging pointwise
on E converges in the ball |z|] < R.

DEFINITION 1.2. We say that a subset E of CY has Weak Abel’s Property if
every series (1.1) converging on E has a positive radius of convergence.

PrROBLEM 1 (due to Leja). Characterize subsets E of CV with Abel’s
Property (resp. with Weak Abel’s Property).

DEFINITION 1.3. Let E be a subset of CV and let {n;} be an increasing
sequence of positive integers. Let S,: = Q,+ ... +Q, be the n-th partial sum of
series (1.1). We say that a pair (E, {n;}) has A-Property if each series (1.1) with
the subsequence {S, } converging on E has a positive radius of convergence.

ProBLEM 2. Characterize pairs (E, {n;}) with A4-Property.

Problem 2 reduces to Problem 1 by taking n;=j, jeN.

Problem 1 for compact sets K in C* was solved by Leja ([3], [4]) in terms
of his “triangular” transfinite diameter. His method does not work in C¥ for
N > 3, because it is based on the well-known fact that each homogeneous
polynomial of two variables can be written as a product of linear factors. Such
a property is no more true for homogeneous polynomials of N variables with
N > 3. A partial solution to Problem 1 in CY (N > 2) was given in [7] (for
compact subsets of C") and in [10] (for arbitrary subsets of C¥) in terms of the
extremal homogeneous function ¥, associated with subsets E of CV (see
Chapter 2). Here we give a complete solution to Problem 1 in terms of ¥ (or
equivalently, in terms of a projective capacity ¢(E) of E; see next chapter for the
definitions). Problem 2 for the plane case has been already studied by
Naftalevich [6]. Our solution to Problem 2 given in this paper contains results
of [6] as special cases. We characterize pairs (E, {n;}) with A-Property in terms
of the rate of convergence of {n;},

»: = lim sup N;./n;,
and of the capacity «(E) of E defined by 2.2 below.

2. Global extremal plurisubharmonic functions and capacities in C¥
(Reminder of definitions and main properties)

Let % be the set of all plurisubharmonic (plsh) functions u in C with
sup {u(z)—log(1 +|z|); zeC"} < +c. Let # be the set of all functions
h plurisubharmonic in C¥ such that h(iz) = |A|h(z), AeC, zeC¥. It is well
known that loghe ¥ for every he#, h # 0.

2.1. For every subset E of C" we define two extremal functions
®p(2) = ®(z, E), Y(z2) = ¥(z, E) in C" by the formulas

@(z, E): = sup{expu(z); ue £, u<0 on E},
¥Y(z, E): = sup{h(z); he #, h <1 on E}
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if E < CN is bounded; and
®(z, E): = inf{®(z, F); F < E, F is bounded},
¥Y(z, E): = inf{¥(z, F); F c E, F is bounded}
if E is arbitrary.
2.2. Let « and ¢ be set functions defined for all E = C" by the formulas
= 1/sup{®(z, E); ze B}, o(E): = 1/sup{¥(z, E); ze B},
wl;ere B: = {zeC"; | z| < 1} is the unit ball with respect to a fixed norm || in
C".
2.3. Let B be a set function defined for all E = C¥ by the formula
B(E): = o(¢(E)),
where @(E): = S* "' nC-({1} x E) denotes the intersection of the cone
C;v(ill} x E) = {(t, tz); teC, ze E} with the Euclidean unit sphere S?¥*! in
¢ Now we shall recall some of the properties of @, ¥, a, ¢ and f (the proofs
may be found in [1], [7]-[10]).
24. If K is a compact subset of C¥, then

P(z, K) = sup®!™(z) = lim D}/"(z), W¥(z, K) =sup ¥!"(z) = lim Pi""(2),

nz1 n—-w nz1 n—w
a(K) = inf ol’" = lim «!*,  9(K) = inf gl/" = lim o}/,
nz1 n— o n<1 n— o

where

®,(2): = sup{|P(2); P(2) = } c.2* IIPlx<1},

lej<n

¥, (2): = sup{|Q(2)}; Q(2) = Z .2, 10l < 1},

|l =

= inf{||Plg; P2) = ¥ c.2% IIP|p =1},

la| <n

= inf{|Ql; Q) = ¥ ez Q5> 1}.

2| =n

25. If K is a non-pluripolar subset of C¥, then G(z, K): = log®*(z, K)
(where @* denotes the upper semicontinuous regularization of @) is the unique
function u plurisubharmonic in C¥ with the following properties:

() ¢, +log(l+|z)) < u(z) < ¢, +log(1+|z]) in C", where ¢,, ¢, are real
constants;

(i) (dd‘w)¥ =0 in CM\K, where d = 0+7, d° = i(0—9);

(ili) u =0 on K\F, where F is an F, pluripolar subset of K.

In particularz if N=1and K < C is not polar, then G(z, K) is the Green
function for C\K with pole at infinity.
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2.6. Characterization of pluripolar sets in C". For a subset E of C", the
following conditions are equivalent;

(a) E is globally pluripolar (i.e. there is a plsh function u in C" with
u= —0o on E)

(b) E is #-polar, ie. there is u in £ with 4 = — o0 on E;

(©) «(E)=0;

(d) *(z, E)= + 0.

2.7. Characterization of circled pluripolar sets in C. For a subset E of CV,
the following conditions are equivalent:

(a) the complex cone C-E generated by E is pluripolar;
(b) o(E) =0;

(c) there is h in 5 with h=0 on E, h #0;

(d) Y*(z, E) = + w.

2.8. Basic inequalities for polynomials in C". If P(z) = ) c,z% Q(z) =

a
. lal €n
Y c,z* and K is a compact subset of C¥, then

x| =n

IP(2) < | Plix®"(z, K), |P(2)| < ||IPlix(max {1, |z|l}/ou(K))",
0@ < 121 ¥"(z, K),  12(2) < 1Q1(izll/e(K)Y"

for all z in C", where |P|g: = max|P(z)|.
K

29. Let A4, B, E, E, be arbitrary sets and K, K, compact sets in CV. Then
L&,<by ¥,<¥,if Bc A,

1L &, 10, Vo 1% if Kooy cK,, K=K,
1

L @5 | o5, Vi |¥; if E,cE,.,, E=|JE,,
1

IV. ®5, . = @3 if A is pluripolar,
Yroa = W5 if C-A is pluripolar,

V. log®se ¥ if and only if E is not pluripolar,
logP;e% if and only if C-E is not pluripolar.

2.10. If ¢ denotes any of the set functions «, 8, or g, then ¢ is a Choquet
capacity, 1.e.
() c(4) <c(B) if A< B,
(i) e(K,) |l c(K) if K,|K,
(iii) c(E,))Tc(E) if E,TE,

where A, B, E, E_ are arbitrary and K, K, are compact sets in C".
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2.11. Geometric interpretation of the capacities o and ¢. 1/a(K) is equal to
the radius R of the smallest level domain {ze C"; G(z, K) < logR} containing
the unit ball B.

o(K) = sup{r = 0;rB = K,}, where K,: = {ze C¥;|0Q(2)] < ||Q| for every
homogeneous polynomial Q}, i.e. ¢(K) is the radius of the maximal ball (with
respect to the given norm) contained in the convex hull K, of K with respect to
homogeneous polynomials.

2.12. 2(E) > 0 iff log®Prec ¥; o(E)> 0 iff Yrex.

213. If a«(A)=0 (resp. o(A)=0), then a(Eu A)=a(E) (resp.
e(E L A) = ¢(E)).

2.14. &(z, E,) = ¥(z, E) = max {1, ¥(z, E)}, «(E,) = «(E )= min{1, g(E)},
where E,: = {1z; AieC, A <1, zeE}, E.:={iz; AeC,|A| =1, ze E}.

2.15. Given a subset E of C" let 1 x E be the subset of C x CV defined by
1 xE:={(1, 2); ze E}. Then

Dp(z) = Vyxg(l,z) in C¥ and mo(l x E) < a(E) < Mo(1 x E),

m and M being positive constants depending only on the fixed norms in CY and
C"*! but not on E. Remember that g(1 x E) depends on the norm in C¥*! and
o(E) on the norm in CV,

2.16. If B is the set function defined in 2.3, then
ma(E) < me(1 < E) < B(E) < (1 xE) < a(E), E < B(0, R),
where
m = m(R): = sup{¥ (1, 2); |z]| < R}.
3. A solution to Problem 1
The aim of this section is to prove the following theorem.

THEOREM 3.1. (i) If E is a subset of CN such that the complex cone C-E is
not pluripolar, then each series of homogeneous polynomials (1.1) convergent
o-a.e. on E converges locally uniformly in the domain

Q:={zeC"; PY*(z, E) < 1}
and consequently in the ball |z| < o(E).

(ii) If E is any F, set in C", then the following conditions are equivalent:
(1) o(E) > 0 (i.e. C-E is not plp),

(2) E has Abel’s Property;

(3) E has Weak Abel’'s Property.
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Conditions (1) and (2) are equivalent for all sets in CV.

(i) A subset E of CN has Weak Abel’s Property if and only if there is no F,
complex cone F containing E with o(F)=0.

(iv) IfE is a subset of CY such that the cone C-E is a G, set dense in an open
non-empty subset Q of C~, then E has Weak Abel’s Property. In particular there
are pluripolar subsets E of C¥ (N = 2) with Weak Abel's Property.

Proof (i) Put E;:={z€E; |Q,(2) <j, k=20, |zl <j}. Then E; c E;4,
and | ) E, = E\A with g(4) = 0. By 2.9, ¥*(z, E)| ¥*(z, E) in C". Let K be
1

any fixed compact subset of Q. Put 6,: =max ¥*(z, E).Take 6 with
0, <8 < 1. Then "by Dini’s argument ’
Y*(z, E) <0, zeK, j>j,.
Hence by 2.8
10,2 <j(P(z, E)) <j6*, zeK, j>jo, v=0,
which shows that the series ) Q, is uniformly convergent on K.

(i) By (i), the implications (1) = (2) = (3) are always true. Suppose now
E is an F, set with ¢(E)=0. Then we may assume E = (JK;, where
K; < K;, are compact sets. Moreover, there exists a plsh absolutely homo-
geneous function h on C" such that h=0 on E and h # 0. It is known that
h can be written in the form

(+) h=v* with v=limsup|Q,|',

Q, being a homogeneous polynomial of degree n and v* denoting the upper
semicontinuous regularization of v. It is clear that

lim [Q,(z)}"" =0~ for all z in E.

n— o

Let a be a point of C" with limsup|Q,(a)|'’"" # 0. Let {n;} be an increasing

sequence of positive integers such that |Q, ,(a)l”"f > m=const >0, j> 1. By
the Hartogs Lemma there exists an increasing sequence of positive integers {j,}
such that

Q. (&)™ <572 on K, for all s> 1.

Put d;: = n; . The function

Ps(z): = Sdst,(Z)/Qd,(a)s ZECN
is a homogeneous polynomial of degree d,. For every positive integer ¢ the

a©

series ) P, is uniformly convergent on K,, because
~ :

IP IR < s™H1Qq (@) < 1/sm, s>t
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On the other hand, the series ) P, is divergent at every point

1
t"ta, t=1,2,..., because P (t” 'a) = (s/t)* for all s > 1. Therefore our series
has zero radius of convergence. So we have proved that for F_ sets E one has
(3)=(1).
Suppose now E is a set in C¥ with g¢(E) = 0 and let h be a function given
by (4+) with h =0 on E, h # 0. For every r > 0 there is a point a in C" such
that |a| <r and h(a) = lim sup|Q,(a)|'”" > 0. Without loss of generality we

may assume h(a) = 1. The series ) Q, converges at each point of C-E and
0
diverges at each point z = la with A€ C, |4] > 1. Therefore E does not satisfy

(2). We have thus proved that (2)=(1) for every set E in CV.

(1) If there 1s an F, complex cone F with E < F, ¢(F) = 0, then by (1)
E has not Weak Abel’s Property.

Suppose now g(F) > 0 for each F, complex cone F containing E. Given
a series (1.1) .converging on E, put ¥(z): =sup|Q,(z))'" and F:= {zeC¥,
nz1
¥Y(z) < +0}. Then F is an F, cone containing E. Hence g(F) > 0. The set
Fj:={zeC"; ¥Y(z) </, |z| €j} is compact and o(F))To(F). Take j so large
that ¢(F;) > 0. Then for all v>1

10.@ < (llzll/e(F)) <27 if |zl < (2))'e(F),

which implies that series (1.1) converging on E has a positive radius of
convergence. The proof of (i) 1s concluded.

(iv) Given any series f = ) @, of homogeneous polynomials converging

n=0
on E, the complex cone F: = {¥(z) < + o0}, where ¥ = sup|Q,|'™ is of type
nz1

F, and C-E c F. Since C-E is dense in an open non-empty set Q = C¥ with
Baire property, it follows that ¥ is bounded in a neighbourhood of 0 in C¥.
Hence the series f is convergent in a neighbourhood of the origin.

ExaMPLE. Let A = {a;} be a countable dense subset of C¥ (N > 2). By
2.10, p(C-A) = 0, and by 2.7, there i1s an absolutely homogeneous plsh function
h with h =00n C-A, h # 0. The cone E: = {h(z) = 0} is a G, dense pluripolar
set in CN. By (iv) E has Weak Abel’s Property. By (ii) the set E has not Abel’s
Property (because g(E) = 0). The proof of Theorem 3.1 is finished.

Remark 3.2. Statements (i) and (ii) of Theorem 3.1 are known ([10]). We
have inserted them here to get a “round” theorem and because lecture notes
[10] are not easily available.

CoroLLARY 3.3 (from (i), (i1) and 2.11). A compact set K in CV has Abel’s
Property if and only if its convex hull K, with respect to homogeneous
polynomials of N complex variables has a non-empty interior. If a series of
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homogeneous polynomials converges pointwise on K, then it converges locally
uniformly in the interior of K,.

4. Convergence sets of N-tuple power series

We say that an N-tuple power series

Pz)=>c¢,z* (xeZh, zeC")

is convergent if there are two positive real numbers r and M such that
ez < M (xeZ¥, |a| = a, + ... +ay), otherwise the series is called divergent.
It is well known that a power series P is convergent if and only if the series

f= Y 0, of homogeneous polynomials Q,(z) = ), c,z* converges in a neigh-

n=0
bourhood of 0 in C".

Let G(k, N) denote the Grassmann manifold of all k-dimensional sub-
spaces V of CV. We say that a family E = G(k, N) of k-dimensional subspaces
of CY has Abel’s Property if there is a positive number R = R(E) such that
every N-tuple power series P with the property that P|V is a convergent k-tuple
power series for every VeE, is absolutely convergent in the polydisk |z < R
G=1,...,N).

We say that E < G(k, N) has Weak Abel’s Property if every N-tuple power
series P such that P|V is convergent for every V e E is convergent. In the last
property the radius of the absolute convergence of P may depend on P.

It is clear that Abel’s Property implies Weak Abel’s Property. We shall sce
that the inverse implication is not true.

Given E <= G(k, N), denqte by E = U V the union of all k-dimensional

VeE
subspaces V of C¥ belonging to E. The set E is a complex cone in CV. The set

E can be treated in a canonical way as a subset of G(1, N) — the set of complex
vector lines in CV,

As a corollary from Theorem 3.1 one gets the following slight im-
provement of results due to Levenberg and Molzon [5].

THEOREM 4.1. (i) A subset E of G(k, N) has Abel’s Property if and only if
the corresponding complex cone E is not pluripolar.

(i) A subset E of G(k, N) has Weak Abel’s Property if and only if E is not
contained in any F, pluripolar complex cone F.

(iii) If E < G(k, N) is a family of k-dimensional subspaces of C" such that
the corresponding cone E is a dense G, subset of an open non-empty subset Q of
CV, then E has Weak Abel’s Property. Moreover, if E is pluripolar, then E has
Weak Abel’s Property but it has not Abel’s Property.

la|=n

5. A solution to Problem 2

In this chapter we shall prove two theorems.
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THEOREM 5.1. Let {n;} be an increasing sequence of positive inteyers with
finite rate of convergence x: = limsupn;, /n;. Let E be a subset of C" with

==
w(E)y>0. Let S,:=0Qy+ ... +Q, be the n-th partial sum of a series of
homogeneous polynomials

f= in with  Q,(z2)= ) ¢z (xeZh).
v=0

la|=v
Then the following statements are true:

(a) If the sequence {S, —S, } is bounded a-a.e. on E, then f converges in
the ball

lz| < a(EY".
(b) If
M: =limsup|S, —S, "
j—ec

is finite, then the series f converges in the ball
Iz < min{a(E)/M, («(E)/M)*}.
(© If
sup|S

izt

(@) =S,

nj+1

is finite a-a.e. on E, then the series [ has a positive radius of convergence.
d) If

limsup|S, , (2)—S8, @' =0 oa-ae on E,

j= o

then the series f converges locally uniformly in the whole space CN (i.e. the series
represents an entire function of N complex variables).

Proof. (a) E;: = {zeC"; 1S,,.,(2)=S8,,@ <1, j=1, |z| <} is a compact

set, E, < E;,; and a(F) > «(E), where F: = | ] E,. By 2.8,
1=1

1S,,., (=S, () < l(E)™™** if |z < 1.
Hence by the Cauchy inequalities
|Q,(Z) < ”‘Z"l/a(El)"sz nj+1 < Il < UITST ZECN.

Therefore
limsup |Q,(2)]*" < |z|/a(E)* in CV,

= a

which ends the proof of (a).
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(b) Given ¢ > O one has ||S
and the Cauchy inequalities,

—S, £ < M+e, j > j,. Hence, via 2.8

Hj+1

M+S nj+t ) )
1Q,(2)] < (W) IzIt*, nj+l l<<ngey, j>j
which implies
limsup [Q,(z)|"" <
=+
This concludes the proof of (b).

(c) The set E;:={zeC":[S, (2)=S, @' '<Lj=1, |z <1} is
compact, E, < E;; | and E,TF with a(F) > «(E). Take [ so large that x2(E,) > 0.
Then by (b) the series f is convergent at least in the ball

izl < min{a(E)/, (x(E)/1)}.

(d) Given &>0, the set Eje): ={zeC"; |S, ,  (2)=S,,(2)'""" <&,
j=1, |zl €1} is compact and E,(e)1 F as | — oo, where a(F) > a(E) > 0. Take
I so large that a(E,) > a{E)/2. Then by (b) the series f is convergent in the ball

Iz < min {(E)/2e, («(E)/2¢)"}. =

THEOREM 5.2. Given {n;} and a compact polynomially convex set K in CV,
assume that at least one of the following two conditions (a) or (b) is satisfied:

(@) x> 1, a(K)=0;

(b) % = + o0, 0¢intK.

Then there exists a series f such that the sequence {S,} is uniformly
convergent on K but it has zero radius of convergence.

{(M/a(E))" lzl if M > a(E),
(M/a(EN liz| if M < a(E).

Proof Let J be an infinite subset of N such that

() njpr—n;<mep—n if jkeld, j<k;

(1) % = limnj,/n;, j—>o00,jeJ.

Let ¢, denote the extremal function defined in 2.1. It is known [1] that
the set {®,(z) < Px(2)} is pluripolar. Let A = {a; jeJ} be a dense subset of
CM\K, where each point a of A is repeated infinitely many times in the family
(a))js and Py (a) = & (a) for every ae A.

For a fixed jeJ let P; be a polynomial of degree < n;,,—n;—1 such that
IP;lx <1 and |Pjay)l = ®,,,,-n;—1(a;), where &, is defined by 2.4. Put
M: =sup{|z|; ze K} and

;=2 ni+1 i 5
o B W P(z{z,/M)" if jedJ,
(%) 5,,., (@)= 5,,): {O s
It is clear that, for every jeN, S, | —S, = Qns1+ ... +0Q,,, ., where Q, ., is

a homogeneous polynomial of degree n;+k, k=1,...,n;,;—n,.

Let ) Q, be the series of homogeneous polynomials whose partial sums Sn;
0
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are uniquely determined by equations (%). We claim that it is the required
series. Indeed, if follows from (%) that

1S,,.,(2)=S, (2 <j % jeN, zek,

which implies that the sequence {S,} is uniformly convergent on K.
Let w=(w,, ..., wy) be a fixed point in A with w, # 0. Observe that

1S,,,,(2) =S, (D <72 P, —n;—1 (@2 / M|V
=:gj(z)n_,‘+1—n,-—1.
If (a) is satisfied, then
lim  g;(w) = @x(w)(lw,|/M)'*"V = + o0,

j— o, jel

because Py(w) = + 0. Hence S, , (w)—S, (w) - 0o. So the series Y Q, diver-
ges at each point we A with w,; # 0. Since K is pluripolar it follows that the
series diverges in a dense subset of CV.

If (b) is satisfied, then lim g;(w) = @x(w)> 1. Hence again S, (w)

j— o0, jet

—S,,(w) > asj-> o (jeJ)f Sojthe series Y @, diverges at each point we 4
with w, # 0. Since 0¢ int K, it follows that every ball B(0, r) contains a point
w of A4 with w, # 0, which shows that the series has zero radius of convergence.

Remark. If N = 1, then part (b) of Theorem 5.2 and a weaker version of
(a) in Theorem 5.1 are due to Naftalevich, whose paper [6] inspired the author
to study Problem 2 in C", N > 1.

6. Examples

ExAMPLE 1. Let p be a positive integer. Let S, denote the n-th partial sum
of a power series

f@)=Yc,2", :zeC,

on the complex plane and let {n;} be an increasing sequence of positive
integers.

(@) If njyy—n;<p (j=1) and the sequence {S, , —S,} is bounded at
each of the points z,, ..., z, of C\{0} with z; # z, (j # k), then f converges in
the disk |z < r: = min{|z|, ..., |z,|}. In particular, if {S, } is bounded at each
of the points z,, ..., z,, then f converges in the disk |z| < min{|z|, ..., |z}

B) If nj,y—n;>p (j=1) and z,, ..., z, are arbitrary points of C, then
there is a power series f such that sequence of its partial sums {S,,J,} converges at
each of the points z,,-..,z, but f has zero radius of convergence.

Statement (a) is a direct consequence of Theorem 3.1 (i). An independent
proof in this case is very simple. Namely, observe that

Sru+ 1(2)—Sn,-(z) = znj+1[cn1+l +cn1+22+ o Fe zn”!_"j_l] = znj+1pj(z)z

nj+1
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where degP; < p—1. Hence by the Lagrange Interpolation Formula with
nodes z,, ..., z, one gets

Pl < Mr™7h, <1, j21,
J

where r = min{jz,|, ..., |z,|} and M is a positive constant that depends neither
on z nor on j. Hence, by the Cauchy inequalities,
-— l .
ifr<l
1/k 1/k, °
le " < M { —;+ )fnj ey ifr>1,

for all k with n; < k < n;,,. Theorefore, limsup|c,/'* <r~1.
k— o0

In order to show (f) take P(z): =(z—z,)...(z—z,) and define
(+) S =Sai = (VT IP@) = ¢, 2T L 4, 2

nj+1 1 7l+1

It is clear that S, + Z (S

l'lj+1

S,,) converges uniformly on A = {z,,..., z,}

but diverges at each pomt z¢(A U {0}). Hence the power series f with
coefficients given by (+) converges only at O.

ExAMPLE 2. Let n; =%, E={1+1/k; k> 1} U {1}, and F = {1+27%;

1} v {1}.

(i) If the sequence of partial sums {S;} of a power series f is uniformly
convergent on E, then f converges in the disk |z| < 1.

(ii) There is a power series fsuch that the sequence of its partial sums {S .}
is uniformly convergent on F but f converges only at 0.

Proof (i) Put P;:=S;,y2—Sp=2""'Q, Then degQ;<2j and

2j+1
1Qle <liPllg <« M =const. Put Ly(z) = n (z—2z)/(z,—z,), Wwhere
k=1.k#*s
2j+1
z, = 1 +1/k. Then Q;(z) = Z Q;(z)Ly(2). It is clear that |z,—z,| > 1/2j(2j+1),
and |z—z,| < 3forzin D: = {|z| < 1}. Hence ||Q;l, < M;: = (2j+ 1)M3%/[2j x

(2j+1)]~%. Therefore, || P;|l, < M;. Hence by the Cauchy mequa]ities one gets
le s < MM MM if 2 <s<(+1)2

Therefore, limsup|c|'* <t

(i) Let Q;(z) = (z—x,) ... (z—x,;) be a polynomial of degree 2j such that
Xy, .5 Xp;€F and ||Q)llp < max|(z—z,) ... (z—2z,)| for all z,, ..., z,; in F.

zeF
Then

”Q,"F < (! _}’2_,')(1 —}’2j—1) o (I=yy) = PAACRESASE +22j),
where y, = 1+27%°. Therefore
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0] lim [|Q;| " *9" = 0.

i

Put

1/2 2+1
S(j+l)2—Sj2: =}_2(§) Q,(Z)/"Q,"p

Then the sequence {S.} is uniformly convergent on F. But for z in C\(F u {0})
we have

1/|z[\** r . :
IS+ 12— Sl 2}3(?) ol with r = dist(z, F),
which by (!) implies lim [S;; )2 —S5;.(2)] = + 0.

Theorem 5.2 doejs_’got cover the case of x =1 and «(K) = 0. Example
2 shows that in this case the statement of Theorem 5.2 is false.

EXAMPLE 3. Assume x = 1 and nj, —n; < nj,,—n;—y (j 2 2) (ie {n;} is
convex), e.g. n; = j>. Then for every countable set E = {z,: p > 1} < C there is
a power series f such that {S, j} converges at each point of E but the series
converges only at O.

Proof. Put §, =0 and

nj+1
Ilj+1z

(:) S"j+1(z)_S"j(z): = ajznj+le(Z) = cllj+ lznj+l + te +C

where Q(z): = (z—z,) ... (z—2,,,,-n,-1) and a;: =1/ max |27 1Q;(2)|.
lz|=1/j

Then

mp @
lim §, (z,) = Y azikt0z,) =) ¢z p>1,
jow k=1 s=0

where ¢, are given by () and m,: = min{n;, —n;—1; n;., —n;—1 > p}. If the
power series » c,z° were convergent in a neighbourhood of 0, then the series
Y, max|S

j=1lz1=r
But this is impossible because

(z)——S,,j(z)l would be convergent for all sufficiently small r > 0.

nj+1

max|S, , (2)—S,(z)| = max |z™ " 'Q(z)l/ max |z%F'Qi(z) =1 for j=> 1.
lzl=r |zl =r lzl=1/j
ExaMPLE 4. Let S = {xe R": |x| = 1} be the Euclidean unit sphere in R".
It is known [2] that ¥(z, S) = (x> +Iy>+2/Ix?Iyl2 — (x, y)?)? for all
z=x+iy in CV, so that S, = {¥(z, S) < 1} is the unit Lie ball in C¥. By

Theorem 3.1 (i), if ) Q, is any series of homogeneous polynomials converging

s
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on S, then it converges in the unit Lie ball. In particular, every function
u harmonic in the unit Euclidean ball in R" can be extended to a holomorphic
function @ of N complex variables in the unit Lie ball in C".
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