On series of homogeneous polynomials
and their partial sums

by Józef Siciak (Kraków)

Zdzisław Opial in memoriam

Abstract. Let \(\sum_{r=0}^{\infty} Q_r(z) \) be a series of homogeneous polynomials on \(\mathbb{C}^N \) with \(Q_r(z) = \sum_{|\alpha|=r} c_{\alpha} z^{\alpha} \), \(\alpha \in \mathbb{Z}_+^N \). Let \(S_n := Q_0 + \ldots + Q_n \) be the \(n \)-th sum of the series, \(E \) a subset of \(\mathbb{C}^N \), and \(\{n_j\} \) an increasing sequence of positive integers. We say that a pair \((E, \{n_j\})\) has \(A \)-Property if each series \(\sum_{n=0}^{\infty} Q_n(z) \) with \(\{S_{n_j}(z)\} \) converging for every \(z \) in \(E \) has a positive radius of convergence. The paper delivers a characterization of pairs \((E, \{n_j\})\) with \(A \)-Property in terms of global extremal plurisubharmonic functions and of related capacities as well as of the rate of convergence \(\varkappa := \limsup_{j \to \infty} n_{j+1}/n_j \) of the sequence \(\{n_j\} \). In particular, it is shown that if \(\varkappa \) is finite and \(\{S_{n_j}(z)\} \) converges at each point \(z \) of a nonpluriharmonic set \(E \) in \(\mathbb{C}^N \), then the series converges in the ball \(\|z\| < \varkappa^r \), where \(\alpha = \alpha(E) \) is a capacity of \(E \).

1. Introduction

Let

(1.1) \[\sum_{r=0}^{\infty} Q_r(z) \quad \text{with} \quad Q_r(z) = \sum_{|\alpha|=r} c_{\alpha} z^{\alpha}, \quad z \in \mathbb{C}^N \]

be a series of homogeneous polynomials of \(N \) complex variables. If \(N = 1 \) then (1.1) is a power series,

(1.2) \[\sum_{r=0}^{\infty} c_r z^r, \quad z \in \mathbb{C}. \]

It is the classical result due to Abel that if (1.2) converges at a point \(z_0 \neq 0 \) then it converges in the disk \(|z| < r = |z_0| \). About 60 years ago F. Leja observed that, given any countable set \(E \) in \(\mathbb{C}^2 \), one can construct a series (1.1) convergent on \(E \) but having no positive radius of convergence.

Definition 1.1. We say that a subset \(E \) of \(\mathbb{C}^N \) has \emph{Abel's Property} if there
is a positive number \(R = R(E) \) such that every series (1.1) converging pointwise on \(E \) converges in the ball \(|z| < R \).

Definition 1.2. We say that a subset \(E \) of \(C^N \) has *Weak Abel's Property* if every series (1.1) converging on \(E \) has a positive radius of convergence.

Problem 1 (due to Leja). Characterize subsets \(E \) of \(C^N \) with Abel's Property (resp. with Weak Abel's Property).

Definition 1.3. Let \(E \) be a subset of \(C^N \) and let \(\{n_j\} \) be an increasing sequence of positive integers. Let \(S_n = Q_0 + \ldots + Q_n \) be the \(n \)-th partial sum of series (1.1). We say that a pair \((E, \{n_j\}) \) has *A-Property* if each series (1.1) with the subsequence \(\{S_{n_j}\} \) converging on \(E \) has a positive radius of convergence.

Problem 2. Characterize pairs \((E, \{n_j\})\) with *A-Property*.

Problem 2 reduces to Problem 1 by taking \(n_j = j, j \in N \).

Problem 1 for compact sets \(K \) in \(C^2 \) was solved by Leja ([3], [4]) in terms of his "triangular" transfinite diameter. His method does not work in \(C^N \) for \(N \geq 3 \), because it is based on the well-known fact that each homogeneous polynomial of two variables can be written as a product of linear factors. Such a property is no more true for homogeneous polynomials of \(N \) variables with \(N \geq 3 \). A partial solution to Problem 1 in \(C^N \) (\(N \geq 2 \)) was given in [7] (for compact subsets of \(C^N \)) and in [10] (for arbitrary subsets of \(C^N \)) in terms of the extremal homogeneous function \(\Psi_E \) associated with subsets \(E \) of \(C^N \) (see Chapter 2). Here we give a complete solution to Problem 1 in terms of \(\Psi_E \) (or equivalently, in terms of a projective capacity \(g(E) \) of \(E \); see next chapter for the definitions). Problem 2 for the plane case has been already studied by Naftalevich [6]. Our solution to Problem 2 given in this paper contains results of [6] as special cases. We characterize pairs \((E, \{n_j\})\) with *A-Property* in terms of the rate of convergence of \(\{n_j\} \),

\[
\alpha = \limsup N_{j+1}/n_j,
\]

and of the capacity \(\alpha(E) \) of \(E \) defined by 2.2 below.

2. Global extremal plurisubharmonic functions and capacities in \(C^N \)

(Reminder of definitions and main properties)

Let \(\mathcal{L} \) be the set of all plurisubharmonic (plsh) functions \(u \) in \(C^N \) with \(\sup \{u(z) - \log(1 + |z|); z \in C^N \} < +\infty \). Let \(\mathcal{H} \) be the set of all functions \(h \) plurisubharmonic in \(C^N \) such that \(h(\lambda z) = |\lambda|h(z), \lambda \in C, z \in C^N \). It is well known that \(\log h \in \mathcal{L} \) for every \(h \in \mathcal{H}, h \neq 0 \).

2.1. For every subset \(E \) of \(C^N \), we define two extremal functions \(\Phi_E(z) \equiv \Phi(z, E), \Psi_E(z) \equiv \Psi(z, E) \) in \(C^N \) by the formulas

\[
\Phi(z, E) := \sup \{\exp u(z); u \in \mathcal{L}, u \leq 0 \text{ on } E\},
\]

\[
\Psi(z, E) := \sup \{h(z); h \in \mathcal{H}, h \leq 1 \text{ on } E\}
\]
if $E \subseteq C^N$ is bounded; and
\[
\Phi(z, E) = \inf \{ \Phi(z, F); F \subseteq E, \, F \text{ is bounded} \}, \\
\Psi(z, E) = \inf \{ \Psi(z, F); F \subseteq E, \, F \text{ is bounded} \}
\]
if E is arbitrary.

2.2. Let α and φ be set functions defined for all $E \subseteq C^N$ by the formulas
\[
\alpha(E) := 1/\sup \{ \Phi(z, E); z \in B \}, \quad \varphi(E) := 1/\sup \{ \Psi(z, E); z \in B \},
\]
where $B := \{ z \in C^N; \| z \| < 1 \}$ is the unit ball with respect to a fixed norm $\| \cdot \|$ in C^N.

2.3. Let β be a set function defined for all $E \subseteq C^N$ by the formula
\[
\beta(E) := \varphi(\varphi(E)),
\]
where $\varphi(E) = S^{2N+1} \cap C \cdot \{ \{ 1 \} \times E \}$ denotes the intersection of the cone $C \cdot \{ \{ 1 \} \times E \} = \{ (t, tz); t \in C, \, z \in E \}$ with the Euclidean unit sphere S^{2N+1} in C^{N+1}.

Now we shall recall some of the properties of $\Phi, \Psi, \alpha, \varphi$ and β (the proofs may be found in [1], [9]-[10]).

2.4. If K is a compact subset of C^N, then
\[
\Phi(z, K) = \sup \Phi_n^{1/n}(z) = \lim_{n \to \infty} \Phi_n^{1/n}(z), \quad \Psi(z, K) = \sup \Psi_n^{1/n}(z) = \lim_{n \to \infty} \Psi_n^{1/n}(z),
\]
\[
\alpha(K) = \inf \alpha_n^{1/n} = \lim_{n \to \infty} \alpha_n^{1/n}, \quad \varphi(K) = \inf \varphi_n^{1/n} = \lim_{n \to \infty} \varphi_n^{1/n},
\]
where
\[
\Phi_n(z) := \sup \{ \| P(z); P(z) = \sum_{|x| \leq n} c_x z^x, \| P \|_K \leq 1 \},
\]
\[
\Psi_n(z) := \sup \{ \| Q(z); Q(z) = \sum_{|x| = n} c_x z^x, \| Q \|_K \leq 1 \},
\]
\[
\alpha_n := \inf \{ \| P \|_K; P(z) = \sum_{|x| \leq n} c_x z^x, \| P \|_B \geq 1 \},
\]
\[
\varphi_n := \inf \{ \| Q \|_K; Q(z) = \sum_{|x| = n} c_x z^x, \| Q \|_B \geq 1 \}.
\]

2.5. If K is a non-pluripolar subset of C^N, then $G(z, K) = \log \Phi^*(z, K)$ (where Φ^* denotes the upper semicontinuous regularization of Φ) is the unique function u plurisubharmonic in C^N with the following properties:

(i) $c_1 + \log(1 + |z|) \leq u(z) \leq c_2 + \log(1 + |z|)$ in C^N, where c_1, c_2 are real constants;

(ii) $(dd^c u)^N = 0$ in $C^N \setminus K$, where $d = \partial + \overline{\partial}, \, d^c = i(\overline{\partial} - \partial)$;

(iii) $u = 0$ on $K \setminus F$, where F is an F_σ pluripolar subset of K.

In particular, if $N = 1$ and $K \subseteq C$ is not polar, then $G(z, K)$ is the Green function for $C \setminus \hat{K}$ with pole at infinity.
2.6. Characterization of pluripolar sets in \mathbb{C}^N. For a subset E of \mathbb{C}^N, the following conditions are equivalent:

(a) E is globally pluripolar (i.e. there is a plsh function u in \mathbb{C}^N with $u = -\infty$ on E);

(b) E is \mathcal{L}-polar, i.e. there is u in \mathcal{L} with $u = -\infty$ on E;

(c) $\alpha(E) = 0$;

(d) $\Phi^*(z, E) \equiv +\infty$.

2.7. Characterization of circled pluripolar sets in \mathbb{C}^N. For a subset E of \mathbb{C}^N, the following conditions are equivalent:

(a) the complex cone $C\cdot E$ generated by E is pluripolar;

(b) $q(E) = 0$;

(c) there is h in \mathcal{H} with $h = 0$ on E, $h \neq 0$;

(d) $\Psi^*(z, E) \equiv +\infty$.

2.8. Basic inequalities for polynomials in \mathbb{C}^N. If $P(z) = \sum_{|z|\leq n} c_z z^z$ and K is a compact subset of \mathbb{C}^N, then

$$ |P(z)| \leq \|P\|_K \Phi^n(z, K), \quad |P(z)| \leq \|P\|_K (\max \{1, \|z\|/\alpha(K)\})^n, $$

$$ |Q(z)| \leq \|Q\|_K \Psi^n(z, K), \quad |Q(z)| \leq \|Q\|_K (\|z\|/q(K))^n $$

for all z in \mathbb{C}^n, where $\|P\|_K := \max_{K} |P(z)|$.

2.9. Let A, B, E, E_n be arbitrary sets and K, K_n compact sets in \mathbb{C}^N. Then

I. $\Phi_A \leq \Phi_B, \quad \Psi_A \leq \Psi_B$ if $B \subset A$,

II. $\Phi_{K_n} \uparrow \Phi_K, \quad \Psi_{K_n} \uparrow \Psi_K$ if $K_{n+1} \subset K_n, \quad K = \bigcap_{1}^{\infty} K_n$,

III. $\Phi_{E_n}^* \downarrow \Phi_E^*, \quad \Psi_{E_n}^* \downarrow \Psi_E^*$ if $E_n \subset E_{n+1}, \quad E = \bigcup_{1}^{\infty} E_n$,

IV. $\Phi_{E \cup A}^* = \Phi_E^*$ if A is pluripolar,

$\Psi_{E \cup A}^* = \Psi_E^*$ if $C\cdot A$ is pluripolar,

V. $\log \Phi_E^* \in \mathcal{L}$ if and only if E is not pluripolar,

$\log \Psi_E^* \in \mathcal{L}$ if and only if $C\cdot E$ is not pluripolar.

2.10. If c denotes any of the set functions α, β, or q, then c is a Choquet capacity, i.e.

(i) $c(A) \leq c(B)$ if $A \subset B$,

(ii) $c(K_n) \downarrow c(K)$ if $K_n \downarrow K$,

(iii) $c(E_n) \uparrow c(E)$ if $E_n \uparrow E$,

where A, B, E, E_n are arbitrary and K, K_n are compact sets in \mathbb{C}^N.
2.11. **Geometric interpretation of the capacities \(\alpha \) and \(\varrho \).** \(1/\alpha(K) \) is equal to the radius \(R \) of the smallest level domain \(\{ z \in C^N; G(z, K) < \log R \} \) containing the unit ball \(B \).

\[
\varrho(K) = \sup \{ r \geq 0; rB \subseteq \hat{K}_b \}, \quad \text{where} \quad \hat{K}_b = \{ z \in C^N; |Q(z)| \leq \|Q\|_K \text{ for every homogeneous polynomial } Q \},
\]

i.e. \(\varrho(K) \) is the radius of the maximal ball (with respect to the given norm) contained in the convex hull \(\hat{K}_b \) of \(K \) with respect to homogeneous polynomials.

2.12. \(\alpha(E) > 0 \) iff \(\log \Phi^*_E \in H \); \(\varrho(E) > 0 \) iff \(\Psi^*_E \in H \).

2.13. If \(\alpha(A) = 0 \) (resp. \(\varrho(A) = 0 \)), then \(\alpha(E \cup A) = \alpha(E) \) (resp. \(\varrho(E \cup A) = \varrho(E) \)).

2.14. \(\Phi(z, E_b) \equiv \Phi(z, E_c) \equiv \max \{ 1, \Psi(z, E) \}, \quad \alpha(E_b) = \alpha(E_c) = \min \{ 1, \varrho(E) \} \),

where \(E_b = \{ \lambda z; \lambda \in C, |\lambda| \leq 1, z \in E \}, \quad E_c = \{ \lambda z; \lambda \in C, |\lambda| = 1, z \in E \} \).

2.15. Given a subset \(E \) of \(C^N \) let \(1 \times E \) be the subset of \(C \times C^N \) defined by \(1 \times E: = \{(1, z); z \in E \} \). Then

\[
\Phi_E(z) = \Psi_{1 \times E}(1, z) \quad \text{in} \quad C^N \quad \text{and} \quad m\varrho(1 \times E) \leq \alpha(E) \leq M\varrho(1 \times E),
\]
m and \(M \) being positive constants depending only on the fixed norms in \(C^N \) and \(C^{N+1} \) but not on \(E \). Remember that \(\varrho(1 \times E) \) depends on the norm in \(C^{N+1} \) and \(\varrho(E) \) on the norm in \(C^N \).

2.16. If \(\beta \) is the set function defined in 2.3, then

\[
m\alpha(E) \leq m\varrho(1 \times E) \leq \beta(E) \leq \varrho(1 \times E) \leq \alpha(E), \quad E \subseteq B(0, R),
\]

where

\[
m = m(R): = \sup \{ \Psi_{\varrho(E)}(1, z); \|z\| \leq R \}.
\]

3. **A solution to Problem 1**

The aim of this section is to prove the following theorem.

Theorem 3.1. (i) If \(E \) is a subset of \(C^N \) such that the complex cone \(C \cdot E \) is not pluripolar, then each series of homogeneous polynomials (1.1) convergent \(\varrho \)-a.e. on \(E \) converges locally uniformly in the domain

\[
\Omega = \{ z \in C^N; |\Psi^*(z, E)| < 1 \}
\]

and consequently in the ball \(\|z\| < \varrho(E) \).

(ii) If \(E \) is any \(F_\sigma \) set in \(C^N \), then the following conditions are equivalent:

1. \(\varrho(E) > 0 \) (i.e. \(C \cdot E \) is not plp);
2. \(E \) has Abel's Property;
3. \(E \) has Weak Abel's Property.
Conditions (1) and (2) are equivalent for all sets in \(C^N \).

(iii) A subset \(E \) of \(C^N \) has Weak Abel's Property if and only if there is no \(F_\sigma \) complex cone \(F \) containing \(E \) with \(\varrho(F) = 0 \).

(iv) If \(E \) is a subset of \(C^N \) such that the cone \(C \cdot E \) is a \(G_\delta \) set dense in an open non-empty subset \(\Omega \) of \(C^N \), then \(E \) has Weak Abel's Property. In particular there are pluripolar subsets \(E \) of \(C^N \) \((N \geq 2)\) with Weak Abel's Property.

Proof. (i) Put \(E_j = \{ z \in E; |Q_k(z)| \leq j, k \geq 0, |z| \leq j \} \). Then \(E_j \subset E_{j+1} \) and \(\bigcup_{j=1}^{\infty} E_j = E \setminus A \) with \(\varrho(A) = 0 \). By 2.9, \(\Psi^*(z, E_j) \downarrow \Psi^*(z, E) \) in \(C^N \). Let \(K \) be any fixed compact subset of \(\Omega \). Put \(\theta_1 := \max_k \Psi^*(z, E_j) \). Take \(\theta \) with \(\theta_1 < \theta < 1 \). Then by Dini's argument
\[\Psi^*(z, E_j) < \theta, \quad z \in K, \ j > j_0. \]

Hence by 2.8
\[|Q_j(z)| \leq j(\Psi(z, E_j)^v \leq j^{\theta^v}, \quad z \in K, \ j > j_0, \ v > 0, \]
which shows that the series \(\sum Q_j \) is uniformly convergent on \(K \).

(ii) By (i), the implications (1) \(\Rightarrow \) (2) \(\Rightarrow \) (3) are always true. Suppose now \(E \) is an \(F_\sigma \) set with \(\varrho(E) = 0 \). Then we may assume \(E = \bigcup K_j \), where \(K_j \subset K_{j+1} \) are compact sets. Moreover, there exists a plsh absolutely homogeneous function \(h \) on \(C^N \) such that \(h = 0 \) on \(E \) and \(h \neq 0 \). It is known that \(h \) can be written in the form
\[h = v^* \quad \text{with} \quad v = \limsup_{n \to \infty} |Q_n|^{1/n}, \]
\(Q_n \) being a homogeneous polynomial of degree \(n \) and \(v^* \) denoting the upper semicontinuous regularization of \(v \). It is clear that
\[\lim_{n \to \infty} |Q_n(z)|^{1/n} = 0 \quad \text{for all} \quad z \in E. \]

Let \(a \) be a point of \(C^N \) with \(\limsup_{n \to \infty} |Q_n(a)|^{1/n} \neq 0 \). Let \(\{n_j\} \) be an increasing sequence of positive integers such that \(|Q_{n_j}(a)|^{1/n_j} \geq m = \text{const} > 0, \ j \geq 1 \). By the Hartogs Lemma there exists an increasing sequence of positive integers \(\{j_s\} \) such that
\[|Q_{n_{j_s}}(z)|^{1/n_{j_s}} \leq s^{-2} \quad \text{on} \quad K_s \quad \text{for all} \quad s \geq 1. \]

Put \(d_s := n_{j_s} \). The function
\[P_s(z) = s^{d_s}Q_{d_s}(z)/Q_{d_s}(a), \quad z \in C^N \]
is a homogeneous polynomial of degree \(d_s \). For every positive integer \(t \) the series \(\sum P_s \) is uniformly convergent on \(K_t \), because
\[\|P_s\|_{K_t}^{1/d_s} \leq s^{-1}/|Q_{d_s}(a)|^{1/d_s} \leq 1/sm, \quad s \geq t. \]
On the other hand, the series $\sum_{1}^{\infty} P_s$ is divergent at every point $t^{-1}a$, $t = 1, 2, \ldots$, because $P_s(t^{-1}a) = (s/t)^{d_s}$ for all $s \geq 1$. Therefore our series has zero radius of convergence. So we have proved that for F_σ sets E one has (3) \Rightarrow (1).

Suppose now E is a set in C^N with $\varrho(E) = 0$ and let h be a function given by (+) with $h = 0$ on E, $h \neq 0$. For every $r > 0$ there is a point a in C^N such that $|a| < r$ and $h(a) = \limsup_{n \to \infty} |Q_n(a)|^{1/n} > 0$. Without loss of generality we may assume $h(a) = 1$. The series $\sum_{n=0}^{\infty} Q_n$ converges at each point of $C \cdot E$ and diverges at each point $z = \lambda a$ with $\lambda \in C$, $|\lambda| > 1$. Therefore E does not satisfy (2). We have thus proved that (2) \Rightarrow (1) for every set E in C^N.

(iii) If there is an F_σ complex cone F with $E \subset F$, $\varrho(F) = 0$, then by (ii) E has not Weak Abel's Property.

Suppose now $\varrho(F) > 0$ for each F_σ complex cone F containing E. Given a series (1.1) converging on E, put $\Psi(z) = \sup_{n \geq 1} |Q_n(z)|^{1/n}$ and $F = \{z \in C^N; \Psi(z) < +\infty\}$. Then F is an F_σ cone containing E. Hence $\varrho(F) > 0$. The set $F_j = \{z \in C^N; \Psi(z) \leq j, |z| \leq j\}$ is compact and $\varrho(F_j)\uparrow \varrho(F)$. Take j so large that $\varrho(F_j) > 0$. Then for all $v \geq 1$

$$|Q_n(z)| \leq (j \|z\|/\varrho(F_j))^v \leq 2^{-v^v} \quad \text{if} \quad \|z\| \leq (2j)^{-1} \varrho(F),$$

which implies that series (1.1) converging on E has a positive radius of convergence. The proof of (iii) is concluded.

(iv) Given any series $f = \sum_{n=0}^{\infty} Q_n$ of homogeneous polynomials converging on E, the complex cone $F = \{\Psi(z) < +\infty\}$, where $\Psi = \sup_{n \geq 1} |Q_n|^{1/n}$ is of type F_σ and $C \cdot E \subset F$. Since $C \cdot E$ is dense in an open non-empty set $\Omega \subset C^N$ with Baire property, it follows that Ψ is bounded in a neighbourhood of 0 in C^N. Hence the series f is convergent in a neighbourhood of the origin.

Example. Let $A = \{a_j\}$ be a countable dense subset of C^N ($N \geq 2$). By 2.10, $\varrho(C \cdot A) = 0$, and by 2.7, there is an absolutely homogeneous plsh function h with $h = 0$ on $C \cdot A$, $h \neq 0$. The cone $E = \{h(z) = 0\}$ is a G_δ dense pluripolar set in C^N. By (iv) E has Weak Abel's Property. By (ii) the set E has not Abel's Property (because $\varrho(E) = 0$). The proof of Theorem 3.1 is finished.

Remark 3.2. Statements (i) and (ii) of Theorem 3.1 are known ([10]). We have inserted them here to get a "round" theorem and because lecture notes [10] are not easily available.

Corollary 3.3 (from (i), (ii) and 2.11). A compact set K in C^N has Abel's Property if and only if its convex hull K_δ with respect to homogeneous polynomials of N complex variables has a non-empty interior. If a series of
homogeneous polynomials converges pointwise on \(K \), then it converges locally uniformly in the interior of \(\tilde{K}_b \).

4. Convergence sets of \(N \)-tuple power series

We say that an \(N \)-tuple power series

\[
P(z) = \sum_{\mathbf{z}} c_{\mathbf{z}} z^\mathbf{z} \quad (\mathbf{z} \in \mathbb{Z}_+^N, \ z \in \mathbb{C}^N)
\]

is convergent if there are two positive real numbers \(r \) and \(M \) such that \(|c_{\mathbf{z}}| |z|^{\alpha} \leq M \) \((\mathbf{z} \in \mathbb{Z}_+^N, \ |\alpha| = \alpha_1 + \ldots + \alpha_N) \), otherwise the series is called divergent. It is well known that a power series \(P \) is convergent if and only if the series \(f = \sum_{n=0}^{\infty} Q_n \) of homogeneous polynomials \(Q_n(z) = \sum_{|\alpha| = n} c_{\alpha} z^\alpha \) converges in a neighbourhood of 0 in \(\mathbb{C}^N \).

Let \(G(k, N) \) denote the Grassmann manifold of all \(k \)-dimensional subspaces \(V \) of \(\mathbb{C}^N \). We say that a family \(E \subset G(k, N) \) of \(k \)-dimensional subspaces of \(\mathbb{C}^N \) has Abel's Property if there is a positive number \(R = R(E) \) such that every \(N \)-tuple power series \(P \) with the property that \(P|V \) is a convergent \(k \)-tuple power series for every \(V \in E \), is absolutely convergent in the polydisk \(|z_j| < R \) (\(j = 1, \ldots, N \)).

We say that \(E \subset G(k, N) \) has Weak Abel's Property if every \(N \)-tuple power series \(P \) such that \(P|V \) is convergent for every \(V \in E \) is convergent. In the last property the radius of the absolute convergence of \(P \) may depend on \(P \).

It is clear that Abel's Property implies Weak Abel's Property. We shall see that the inverse implication is not true.

Given \(E \subset G(k, N) \), denote by \(\tilde{E} = \bigcup_{V \in E} V \) the union of all \(k \)-dimensional subspaces \(V \) of \(\mathbb{C}^N \) belonging to \(E \). The set \(\tilde{E} \) is a complex cone in \(\mathbb{C}^N \). The set \(\tilde{E} \) can be treated in a canonical way as a subset of \(G(1, N) \) — the set of complex vector lines in \(\mathbb{C}^N \).

As a corollary from Theorem 3.1 one gets the following slight improvement of results due to Levenberg and Molzon [5].

Theorem 4.1. (i) A subset \(E \) of \(G(k, N) \) has Abel's Property if and only if the corresponding complex cone \(\tilde{E} \) is not pluripolar.

(ii) A subset \(E \) of \(G(k, N) \) has Weak Abel's Property if and only if \(\tilde{E} \) is not contained in any \(F_\delta \) pluripolar complex cone \(F \).

(iii) If \(E \subset G(k, N) \) is a family of \(k \)-dimensional subspaces of \(\mathbb{C}^N \) such that the corresponding cone \(\tilde{E} \) is a dense \(G_\delta \) subset of an open non-empty subset \(\Omega \) of \(\mathbb{C}^N \), then \(E \) has Weak Abel's Property. Moreover, if \(\tilde{E} \) is pluripolar, then \(E \) has Weak Abel's Property but it has not Abel's Property.

5. A solution to Problem 2

In this chapter we shall prove two theorems.
Theorem 5.1. Let \(\{n_j\} \) be an increasing sequence of positive integers with finite rate of convergence \(\chi := \limsup_{j \to \infty} n_{j+1}/n_j \). Let \(E \) be a subset of \(\mathbb{C}^N \) with \(\alpha(E) > 0 \). Let \(S_n := Q_0 + \ldots + Q_n \) be the \(n \)-th partial sum of a series of homogeneous polynomials

\[
f = \sum_{\nu=0}^{\infty} Q_\nu \quad \text{with} \quad Q_\nu(z) = \sum_{|x| = \nu} c_\nu z^x \quad (x \in \mathbb{Z}_+^N).
\]

Then the following statements are true:

(a) If the sequence \(\{S_{n_j+1} - S_{n_j}\} \) is bounded \(\alpha \)-a.e. on \(E \), then \(f \) converges in the ball

\[
\|z\| < \alpha(E)^{\chi}.
\]

(b) If

\[
M := \limsup_{j \to \infty} \|S_{n_{j+1}} - S_{n_j}\|_E^{1/n_{j+1}}
\]

is finite, then the series \(f \) converges in the ball

\[
\|z\| < \min \{\alpha(E)/M, \ (\alpha(E)/M)^\chi\}.
\]

(c) If

\[
\sup_{j \geq 1} |S_{n_{j+1}}(z) - S_{n_j}(z)|^{1/n_{j+1}}
\]

is finite \(\alpha \)-a.e. on \(E \), then the series \(f \) has a positive radius of convergence.

(d) If

\[
\limsup_{j \to \infty} |S_{n_{j+1}}(z) - S_{n_j}(z)|^{1/n_{j+1}} = 0 \quad \alpha \text{-a.e. on } E,
\]

then the series \(f \) converges locally uniformly in the whole space \(\mathbb{C}^N \) (i.e. the series represents an entire function of \(N \) complex variables).

Proof. (a) \(E_l := \{z \in \mathbb{C}^N; |S_{n_{j+1}}(z) - S_{n_j}(z)| \leq l, j \geq 1, |z| \leq l\} \) is a compact set, \(E_l \subset E_{l+1} \) and \(\alpha(F) \geq \alpha(E) \), where \(F := \bigcup_{l=1}^{\infty} E_l \). By 2.8,

\[
|S_{n_{j+1}}(z) - S_{n_j}(z)| \leq l \alpha(E_l)^{-n_{j+1}} \quad \text{if} \quad \|z\| \leq 1.
\]

Hence by the Cauchy inequalities

\[
|Q_l(z)| \leq l \|z\|^l/\alpha(E_l)^{n_{j+1}}, \quad n_{j+1} + 1 \leq l \leq n_{j+1}, \ z \in \mathbb{C}^N.
\]

Therefore

\[
\limsup_{l \to \infty} |Q_l(z)|^{1/l} \leq \|z\|/\alpha(E)^{\chi} \quad \text{in } \mathbb{C}^N,
\]

which ends the proof of (a).
(b) Given \(\varepsilon > 0 \) one has \(\|S_{n_j+1} - S_{n_j}\|^{1/n_j+1} \leq M + \varepsilon, \ j > j_\varepsilon \). Hence, via 2.8 and the Cauchy inequalities,

\[
|Q_l(z)| \leq \left(\frac{M + \varepsilon}{\alpha(E)} \right)^{n_j+1} \|z\|^l, \quad n_j+1 \leq l \leq n_{j+1}, \quad j > j_\varepsilon,
\]

which implies

\[
\limsup_{l \to \infty} |Q_l(z)|^{1/l} \leq \begin{cases}
\left(\frac{M}{\alpha(E)} \right)^{n_j+1} \|z\| & \text{if } M \geq \alpha(E), \\
\left(\frac{M}{\alpha(E)} \right) \|z\| & \text{if } M < \alpha(E).
\end{cases}
\]

This concludes the proof of (b).

(c) The set \(E_{i,j} = \{ z \in \mathbb{C}^N; \|S_{n_{i,j}}(z) - S_{n_j}(z)\|^{1/n_j+1} \leq l, \ i \geq 1, \ \|z\| \leq l \} \) is compact, \(E_i \subset E_{i+1} \) and \(E_i \uparrow F \) with \(\alpha(F) \geq \alpha(E) \). Take \(l \) so large that \(\alpha(E_l) > \varepsilon \). Then by (b) the series \(f \) is convergent at least in the ball

\[
\|z\| < \min \{ \alpha(E_l)/l, \ (\alpha(E_l)/l)^* \}.
\]

(d) Given \(\varepsilon > 0 \), the set \(E_{i,\varepsilon} = \{ z \in \mathbb{C}^N; \|S_{n_{i,\varepsilon}}(z) - S_{n_j}(z)\|^{1/n_j+1} \leq \varepsilon, \ i \geq l, \ \|z\| \leq l \} \) is compact and \(E_{i,\varepsilon} \uparrow F \) as \(l \to \infty \), where \(\alpha(F) \geq \alpha(E) > 0 \). Take \(l \) so large that \(\alpha(E_l) > \alpha(E)/2 \). Then by (b) the series \(f \) is convergent in the ball

\[
\|z\| < \min \{ \alpha(E)/2\varepsilon, \ (\alpha(E)/2\varepsilon)^* \}.
\]

Theorem 5.2. Given \(\{n_j\} \) and a compact polynomially convex set \(K \) in \(\mathbb{C}^N \), assume that at least one of the following two conditions (a) or (b) is satisfied:

- (a) \(\lambda > 1, \ \alpha(K) = 0 \);
- (b) \(\lambda = +\infty, \ 0 \notin \text{int} K \).

Then there exists a series \(f \) such that the sequence \(\{S_{n_j}\} \) is uniformly convergent on \(K \) but it has zero radius of convergence.

Proof. Let \(J \) be an infinite subset of \(N \) such that

(i) \(n_{j+1} - n_j < n_{k+1} - n_k \) if \(j, k \in J, \ j < k \);

(ii) \(\lambda = \lim n_{j+1}/n_j, \ j \to \infty, \ j \in J \).

Let \(\Phi_K \) denote the extremal function defined in 2.1. It is known [1] that the set \(\{ \Phi_K(z) < \Phi_K^*(z) \} \) is pluripolar. Let \(A = \{ a_j; j \in J \} \) be a dense subset of \(\mathbb{C}^N \setminus K \), where each point \(a \) of \(A \) is repeated infinitely many times in the family \((a_j)_{j \in J} \) and \(\Phi_K^*(a) = \Phi_K(a) \) for every \(a \in A \).

For a fixed \(j \in J \) let \(P_j \) be a polynomial of degree \(\leq n_{j+1} - n_j - 1 \) such that \(\|P_j\|_K \leq 1 \) and \(|P_j(a)| = \Phi_{n_{j+1} - n_j}(a), \) where \(\Phi_n \) is defined by 2.4. Put \(M := \sup \{ |z|; \ z \in K \} \) and

\[
S_{n_{j+1}}(z) - S_{n_j}(z) = \begin{cases}
\frac{1}{1-j} P_j(z)(z/M)^{n_j+1} & \text{if } j \in J, \\
0 & \text{if } j \notin J.
\end{cases}
\]

It is clear that, for every \(j \in N \), \(S_{n_{j+1}} - S_{n_j} = Q_{n_{j+1}} + \ldots + Q_{n_j} \), where \(Q_{n_{j+k}} \) is a homogeneous polynomial of degree \(n_j + k, \ k = 1, \ldots, n_{j+1} - n_j \).

Let \(\sum_{n=0}^\infty Q_n \) be the series of homogeneous polynomials whose partial sums \(S_{n_j} \).
are uniquely determined by equations (9). We claim that it is the required series. Indeed, if follows from (9) that

$$|S_{n_j+1}(z) - S_{n_j}(z)| \leq j^{-2}, \quad j \in \mathbb{N}, \quad z \in K,$$

which implies that the sequence $\{S_{n_j}\}$ is uniformly convergent on K.

Let $w = (w_1, \ldots, w_N)$ be a fixed point in A with $w_1 \neq 0$. Observe that

$$|S_{n_j+1}(z) - S_{n_j}(z)| \leq j^{-2} \Phi_{n_j+1-n_j-1}(z)|z_1/M|^{n_j+1} =: g_j(z)^{n_j+1-n_j-1}.$$

If (a) is satisfied, then

$$\lim_{j \to \infty, j \in J} g_j(w) = \Phi_K(w)(|w_1|/M)^{1/(\kappa-1)} = +\infty,$$

because $\Phi_K(w) = +\infty$. Hence $S_{n_j+1}(w) - S_{n_j}(w) \to \infty$. So the series $\sum Q_n$ diverges at each point $w \in A$ with $w_1 \neq 0$. Since K is pluripolar it follows that the series diverges in a dense subset of C^N.

If (b) is satisfied, then $\lim_{j \to \infty, j \in J} g_j(w) = \Phi_K(w) > 1$. Hence again $S_{n_j+1}(w) - S_{n_j}(w) \to \infty$ as $j \to \infty$ $(j \in J)$. So the series $\sum Q_n$ diverges at each point $w \in A$ with $w_1 \neq 0$. Since $0 \notin \text{int} \ K$, it follows that every ball $B(0, r)$ contains a point w of A with $w_1 \neq 0$, which shows that the series has zero radius of convergence.

Remark. If $N = 1$, then part (b) of Theorem 5.2 and a weaker version of (a) in Theorem 5.1 are due to Naftalewich, whose paper [6] inspired the author to study Problem 2 in $C^N, N > 1$.

6. Examples

Example 1. Let p be a positive integer. Let S_n denote the n-th partial sum of a power series

$$f(z) = \sum c_n z^n, \quad z \in C,$$

on the complex plane and let $\{n_j\}$ be an increasing sequence of positive integers.

(a) If $n_{j+1} - n_j \leq p$ $(j \geq 1)$ and the sequence $\{S_{n_j+1} - S_{n_j}\}$ is bounded at each of the points z_1, \ldots, z_p of $C \setminus \{0\}$ with $z_j \neq z_k$ $(j \neq k)$, then f converges in the disk $|z| < r := \min \{|z_1|, \ldots, |z_p|\}$. In particular, if $\{S_{n_j}\}$ is bounded at each of the points z_1, \ldots, z_p, then f converges in the disk $|z| < \min \{|z_1|, \ldots, |z_p|\}$.

(b) If $n_{j+1} - n_j > p$ $(j \geq 1)$ and z_1, \ldots, z_p are arbitrary points of C, then there is a power series f such that sequence of its partial sums $\{S_{n_j}\}$ converges at each of the points z_1, \ldots, z_p but f has zero radius of convergence.

Statement (a) is a direct consequence of Theorem 3.1 (i). An independent proof in this case is very simple. Namely, observe that

$$S_{n_j+1}(z) - S_{n_j}(z) = z^{n_j+1} \left[c_{n_j+1} z^{-1} + c_{n_j+2} z^{-2} + \cdots + c_{n_j+1} z^{n_j+1-n_j-1} \right] = z^{n_j+1} P_j(z),$$
where \(\deg P_j \leq p - 1 \). Hence by the Lagrange Interpolation Formula with nodes \(z_1, \ldots, z_p \) one gets

\[
|P_j(z)| \leq Mr^{-n_j-1}, \quad |z| \leq 1, \quad j \geq 1,
\]

where \(r = \min \{|z_1|, \ldots, |z_p|\} \) and \(M \) is a positive constant that depends neither on \(z \) nor on \(j \). Hence, by the Cauchy inequalities,

\[
|c_k|^{1/k} \leq M^{1/k} \begin{cases} r^{-1} & \text{if } r < 1, \\ r^{-(n_j+1)/n_j+1} & \text{if } r \geq 1, \end{cases}
\]

for all \(k \) with \(n_j < k < n_{j+1} \). Therefore, \(\limsup_{k \to \infty} |c_k|^{1/k} \leq r^{-1} \).

In order to show (\(\beta \)) take \(P(z) = (z-z_1) \ldots (z-z_p) \) and define

\[
+(+) \quad S_{n_j+1}-S_{n_j} = (xz_j + 1)P(z) = c_{n_j+1}z^{n_j+1} + \ldots + c_{n_j+1}z^{n_j+1}.
\]

It is clear that \(S_{n_j+1} + \sum_{j=1}^{\infty} (S_{n_{j+1}} - S_{n_j}) \) converges uniformly on \(A = \{z_1, \ldots, z_p\} \) but diverges at each point \(z \notin (A \cup \{0\}) \). Hence the power series \(f \) with coefficients given by (\(+ \)) converges only at 0.

Example 2. Let \(n_j = j^2, \quad E = \{1+1/k; \quad k \geq 1\} \cup \{1\}, \) and \(F = \{1+2^{-2k}; \quad k \geq 1\} \cup \{1\} \).

(i) If the sequence of partial sums \(\{S_{n_j}\} \) of a power series \(f \) is uniformly convergent on \(E \), then \(f \) converges in the disk \(|z| < 1\).

(ii) There is a power series \(f \) such that the sequence of its partial sums \(\{S_{n_j}\} \) is uniformly convergent on \(F \) but \(f \) converges only at 0.

Proof. (i) Put \(P_j = S_{(j+1)^2} - S_j = z^{j^2+1}Q_j \). Then \(\deg Q_j \leq 2j \) and

\[
\|Q_j\|_E \leq \|P_j\|_E \leq M = \text{const}. \quad \text{Put} \quad L_s(z) = \prod_{k=1, k \neq s}^{2j+1} (z-z_k)/(z_s-z_k), \quad \text{where} \quad z_k = 1+1/k. \quad \text{Then} \quad Q_j(z) = \sum_{s=1}^{2j+1} Q_j(z_s)L_s(z). \quad \text{It is clear that} \quad |z_s-z_k| \geq 1/2j(2j+1), \quad \text{and} \quad |z-z_k| \leq 3 \text{ for } z \text{ in } D = \{|z| < 1\}. \quad \text{Hence} \quad \|Q_j\|_D \leq M_j = (2j+1)M3^{2j}[2j \times (2j+1)]^{-2j}. \quad \text{Therefore,} \quad \|P_j\|_D \leq M_j. \quad \text{Hence by the Cauchy inequalities one gets}
\]

\[
|c_s|^{1/s} \leq M_j^{1/s} \leq M_j^{1/2^j} \quad \text{if} \quad j^2 < s < (j+1)^2.
\]

Therefore, \(\limsup_{s \to \infty} |c_s|^{1/s} \leq 1 \).

(ii) Let \(Q_j(z) = (z-x_1) \ldots (z-x_{2j}) \) be a polynomial of degree \(2j \) such that \(x_1, \ldots, x_{2j} \in F \) and \(\|Q_j\|_F \leq \max_{x \in F} |(z-z_1) \ldots (z-z_{2j})| \) for all \(z_1, \ldots, z_{2j} \in F \). Then

\[
\|Q_j\|_F \leq (1-y_{2j})(1-y_{2j-1}) \ldots (1-y_1) = 2^{-(2+2^2+\ldots+2^{2j})},
\]

where \(y_s = 1+2^{-2s} \). Therefore
\[\lim_{j \to \infty} \|Q_j\|_F^{1/(1+j)^2} = 0. \]

Put

\[S_{j+1} - S_j := \frac{1}{j^3} \left(\frac{z}{2} \right)^{j^2+1} Q_j(z)/\|Q_j\|_F. \]

Then the sequence \(\{S_j\} \) is uniformly convergent on \(F \). But for \(z \) in \(C \cap (F \cup \{0\}) \) we have

\[|S_{j+1} - S_j| \leq \frac{1}{j^3} \left(\frac{r}{2} \right)^{j^2+1} \frac{r^{2j}}{\|Q_j\|_F} \quad \text{with} \quad r = \text{dist}(z, F), \]

which by (1) implies \(\lim_{j \to \infty} |S_{j+1} - S_j(z)| = +\infty \).

Theorem 5.2 does not cover the case of \(\kappa = 1 \) and \(\kappa(K) = 0 \). Example 2 shows that in this case the statement of Theorem 5.2 is false.

Example 3. Assume \(\kappa = 1 \) and \(n_{j+1} - n_j \leq n_{j+2} - n_{j-1} \) (i.e. \(\{n_j\} \) is convex), e.g. \(n_j = j^2 \). Then for every countable set \(E = \{z_p; p \geq 1\} \subset C \) there is a power series \(f \) such that \(\{S_{n_j}\} \) converges at each point of \(E \) but the series converges only at 0.

Proof. Put \(S_{n_1} \equiv 0 \) and

\[S_{n_{j+1}}(z) - S_{n_j}(z) := a_j z^{n_{j+1}+1}Q_j(z) = c_{n_{j+1}} z^{n_{j+1}} + \ldots + c_{n_j} z^{n_j}, \]

where \(Q_j(z) := (z-z_1) \ldots (z-z_{n_{j+1}}-n_{j-1}) \) and \(a_j := 1/\max_{|z|=1/j} |z^{n_j+1}Q_j(z)|. \)

Then

\[\lim_{j \to \infty} S_{n_j}(z_p) = \sum_{k=1}^{m_p} a_k z_p^{n_k+1}Q_k(z_p) = \sum_{s=0}^{\infty} c_s z_p^s, \quad p > 1, \]

where \(c_s \) are given by (1) and \(m_p := \min \{n_{j+1} - n_j - 1; n_{j+1} - n_j - 1 > p\} \). If the power series \(\sum c_s z^s \) were convergent in a neighbourhood of 0, then the series

\[\sum_{j=1}^{\infty} \max_{|z|=r} |S_{n_{j+1}}(z) - S_{n_j}(z)| \]

would be convergent for all sufficiently small \(r > 0 \). But this is impossible because

\[\max_{|z|=r} |S_{n_{j+1}}(z) - S_{n_j}(z)| = \max_{|z|=r} |z^{n_{j+1}+1}Q_j(z)|/\max_{|z|=r} |z^{n_j+1}Q_j(z)| \geq 1 \quad \text{for} \quad j > 1. \]

Example 4. Let \(S = \{x \in \mathbb{R}^N; |x| = 1\} \) be the Euclidean unit sphere in \(\mathbb{R}^N \). It is known [2] that \(\Psi(z, S) = (|x|^2 + |y|^2 + 2\sqrt{|x|^2|y|^2 - \langle x, y \rangle^2})^{1/2} \) for all \(z = x + iy \) in \(C^N \), so that \(\hat{S}_b = \{\Psi(z, S) \leq 1\} \) is the unit Lie ball in \(C^N \). By Theorem 3.1 (i), if \(\sum \Phi_n \) is any series of homogeneous polynomials converging
on S, then it converges in the unit Lie ball. In particular, every function u harmonic in the unit Euclidean ball in \mathbb{R}^N can be extended to a holomorphic function \tilde{u} of N complex variables in the unit Lie ball in \mathbb{C}^N.

References

JAGELLONIAN UNIVERSITY. INSTITUTE OF MATHEMATICS
KRAKOW, POLAND

Reçu par la Rédaction le 17.06.1988