The space N_* of holomorphic functions on bounded symmetric domains

by MANFRED STOLL (Columbia, S.C.)

Abstract. Let D be a bounded symmetric domain in \mathbb{C}^n with Bergman-Šilov boundary B and $0 \in D$, and let N_* denote the space of holomorphic functions on D for which the family $\{\log^+ |f_r| : 0 < r < 1\}$ is uniformly integrable on B. For $f, g \in N_*$, let $\varphi(f, g) = \int \log(1 + |f^* - g^*|) d\mu$, where f^* and g^* denote the boundary values of f and g, respectively. In the paper we prove that (N_*, φ) is an F-algebra, that is, an F-space with a continuous multiplication. We also prove that if γ is a continuous linear functional on N_*, then there exists a holomorphic function g such that

$$\gamma(f) = \lim_{r \to 1^-} \int_B f(r \xi^{-1}) g(\xi t) d\mu(t), \quad 0 < r < q < 1.$$

Some properties of outer functions and the invertible elements in N_* are also included.

Let D be a bounded symmetric domain in \mathbb{C}^n with Bergman-Šilov boundary B and $0 \in D$. Using the notation of [3], [14] we denote by N_* the space of holomorphic functions f on D for which the family $\{\log^+ |f_r| : 0 < r < 1\}$ is uniformly integrable on B. As in [17], where this space was considered for functions holomorphic in the unit disc, we define a translation invariant metric φ on N_* and show that (N_*, φ) is an F-algebra, that is, an F-space with a continuous multiplication. This is the main result of Section 2.

In Section 3 we extend the concept of an outer function, given for the polydisc in [12], to holomorphic functions on arbitrary bounded symmetric domains in \mathbb{C}^n, and in Section 4 we consider the invertible elements in N_*. There we prove that a function f in N_* is invertible if and only if f is outer and that inversion is a continuous operation in N_*. We conclude by giving a characterization of the continuous linear functionals on N_* in Section 5.

Key words and phrases. Bounded symmetric domains, boundary measure, F-space and F-algebra, pluriharmonic and plurisubharmonic functions, outer function.
The present paper was motivated by the results of Yanagihara [17] and it extends some of his results to holomorphic functions on bounded symmetric domains. However, the techniques used in proving the results in general are different. Many of the results depend on properties of plurisubharmonic functions on bounded symmetric domains established in [14] and on properties of functions in N_* proved in [3], [14].

We are indebted to J. W. Roberts for many interesting and useful discussions of some of these topics.

1. Definitions and preliminary results. Let D be a bounded symmetric domain in \mathbb{C}^n with Bergman–Šilov boundary B, and assume $0 \in D$. B is the minimal closed set $\subset \bar{D}$ on which functions holomorphic on \bar{D} assume their maximum [2], p. 215. By [10] D is circular and starlike with respect to 0, i.e., $tz \in D$ whenever $z \in D$, $t \in C$, $|t| \leq 1$.

Let G denote the connected component of the identity of the group of holomorphic automorphisms of D and K the isotropy subgroup of G at 0. The group G is transitive on D and extends continuously to ∂D, the topological boundary of D. The Bergman–Šilov boundary B is circular and invariant under G. The group K acts transitively on B and B admits a unique K-invariant normalized regular Borel measure which will be denoted by μ and is given by $d\mu(t) = V^{-1}ds(t)$, V the euclidean volume of B and $ds(t)$ the euclidean volume element at $t \in B$.

Let $H(D)$ denote the class of holomorphic functions on D. As in [3], [14] we define the spaces $N(D)$ and $N_*(D)$ of holomorphic functions on D as follows:

$$N = N(D) = \{f \in H(D): \sup_{0 < r < 1} \int_B \log^+ |f_r| d\mu < \infty \},$$

where f_r, $0 < r < 1$, is given by $f_r(z) = f(rz)$, $z \in \bar{D}$, and

$$N_* = N_*(D) = \{f \in H(D): \log^+ |f_r|: 0 < r < 1 \}
\text{ is uniformly integrable on } B \}.$$

The Poisson kernel P on $D \times B$ is given by

$$P(z, t) = \frac{|S(z, \bar{t})|^2}{S(z, \bar{z})}, \quad (z, t) \in D \times B,$$

where S is the Szegö kernel of D. By [7], p. 88, S is given by

$$S(z, \bar{w}) = \sum_{k=0}^{\infty} \sum_{\nu=1}^{m_k} \overline{\varphi_{kr}(z) \varphi_{kr}(w)},$$

where \{\varphi_{kr}\} is a complete orthonormal system of homogeneous polynomials on D orthonormalized with respect to the measure μ, and m_k
The series (1.2) converges uniformly on compact subsets of $D \times \overline{D}$, where \overline{D} is the closure of D, and $S(z, \overline{w})$ is holomorphic in (z, \overline{w}) on $D \times D$ and continuous on $D \times \overline{D}$.

For a measure ν on B, set

$$P_z[\nu] = \int_B P(z, t) \, d\nu(t), \quad z \in D.$$

If f is an integrable function on B, set $P_z[f] = P_z[fd\mu]$.

The following result, which was proved in [14], Theorem 3, will be needed.

Lemma 1.

(i) Let $f \in N(D)$, $f \neq 0$, then there exists a minimal regular Borel measure ν_f on B such that

$$\log |f(z)| \leq P_z[\nu], \quad z \in D,$$

and $d\nu_f = \log |f^*| \, d\mu + d\sigma_f$, where

$$f^*(t) = \lim_{r \to 1} f(rt) \quad \text{a.e. on } B,$$

$$\log |f^*| \in L^1(B) \quad \text{and } \sigma_f \text{ is singular (with respect to } \mu) \text{ on } B.$$

(ii) If $f \in N_*(D)$, then $\sigma_f \leq 0$ and

$$\log |f(z)| \leq P_z[\log |f^*|], \quad z \in D.$$

Furthermore

$$\lim_{r \to 1} \int_B |\log^+ |f_r| - \log^+ |f^*| | \, d\mu = 0.$$

In the above, ν_f minimal means that if ν is any other regular Borel measure on B satisfying (1.4), then $\int g \, d\nu_f \leq \int g \, d\nu$ for all non-negative continuous functions g on B.

For $f \in N(D)$, the minimal measure ν_f on B satisfying (1.4) will be referred to as the boundary measure of $\log |f|$ and in addition to the above it also satisfies

$$\int_B d\nu_f = \lim_{r \to 1} \int_B \log |f_r| \, d\mu \quad [14].$$

Throughout the paper we will have several occasions in which we need to use a generalization of Lebesgue's dominated convergence theorem given in [11], p. 232. For convenience we include the result as a lemma.

Lemma 2. Let (X, λ) be a measure space and $\{f_n\}$ and $\{g_n\}$ be two sequences of measurable functions which converge a.e. to f and g, respectively.
Suppose $|f_n| \leq g_n$ a.e. for all n and that $\lim_{n \to \infty} \int g_n \, d\lambda = \int g \, d\lambda < \infty$. Then
\[(1.9) \quad \lim_{n \to \infty} \int f_n \, d\lambda = \int f \, d\lambda.
\]

2. The space N_* as an F-algebra. As in [17], where the space N_* was considered for the case of the unit disc in C, we define a metric ϱ on $N_*(D)$ by
\[(2.1) \quad \varrho(f, g) = \int_B \log \left(1 + |f^*(t) - g^*(t)| \right) d\mu(t),
\]
where f^* and g^* are given by (1.5). By the inequalities
\[(2.2) \quad \log^+ x \leq \log(1 + x) \leq \log^+ x + \log 2, \quad x \geq 0,
\]
\[(2.3) \quad \log(1 + |x + y|) \leq \log(1 + |x|) + \log(1 + |y|),
\]
it is clear that $\varrho(f, g)$ is finite and satisfies the triangle inequality.

Suppose $\varrho(f, 0) = 0$. By (2.1) it follows that $f^* = 0$ a.e. on B and from (1.6) we obtain $f(z) = 0$ for all $z \in D$. Hence ϱ is a metric on $N_*(D)$.

We now proceed to show that N_* with the metric ϱ is not only an F-space in the sense of Banach [1], p. 51, but also an F-algebra in the sense that multiplication is defined and is a continuous operation.

From the inequality
\[(2.4) \quad \log^+ xy \leq \log^+ x + \log^+ y, \quad x, y \geq 0,
\]
it is clear that if $f, g \in N_*$, then $fg \in N_*$ and
\[(2.5) \quad \varrho(fg, 0) \leq \varrho(f, 0) + \varrho(g, 0).
\]
Inequality (2.5) follows from the inequality
\[(2.6) \quad \log(1 + |xy|) \leq \log((1 + |x|)(1 + |y|)) = \log(1 + |x|) + \log(1 + |y|).
\]

The following lemmas will be needed in the proof of Theorem 1.

Lemma 3. Let $f \in N_*(D)$ and C a compact subset of D. Then there exists a constant α_c, depending only on C, such that
\[(2.7) \quad |f(z)| \leq \left[\exp(\alpha_c \varrho(f, 0)) - 1 \right]^{1/2}
\]
for all $z \in C$.

Proof. Since f is holomorphic in D, $\log(1 + |f(z)|^2)$ is plurisubharmonic in D. Furthermore by (2.2) and (2.6),
\[\log(1 + |f(z)|^2) \leq 2\ln 2 + 2\log^+ |f(z)|,
\]
$0 < r < 1$.

Therefore, since $f \in N_*$, $\log(1 + |f(z)|^2)$ is uniformly integrable on B and hence by [14], Theorem 1, $\log(1 + |f(z)|^2) \leq P_\varepsilon[\log(1 + |f^*(z)|^2)], \quad z \in D$. Since $P(z, t)$ is continuous on $D \times B$, given a compact subset C of D there
exists a constant β_c, depending only on C, such that $\log (1 + |f(z)|^a) \leq \beta_c \int \log(1 + |f^*(z)|^a) \, d\mu$ for all $z \in C$. The result now follows by (2.6) with $a_c = 2\beta_c$.

Lemma 4. Let $f \in N_*(D)$. Then

$$M(r) = \int_B \log(1 + |f_r(t)|^a) \, d\mu(t)$$

is a non-decreasing function of r on $[0, 1]$ and

$$\lim_{r \to 1} \int_B \log(1 + |f_r(t)|^a) \, d\mu(t) = \int_B \log(1 + |f^*(t)|^a) \, d\mu(t),$$

where f^* is given by (1.5).

Proof. (2.8) follows by [4], Lemma 2; [14], Lemma 2; and (2.9) follows by the corollary to Theorem 1 in [14].

Theorem 1. The space (N_*, ϕ) is an F-algebra, that is, N_* and ϕ satisfy the following:

(i) $\phi(f, g) = \phi(f - g, 0)$.

(ii) Suppose $f, f_n \in N_*$ and $\phi(f_n, f) \to 0$, then for each $a \in C$

$$\phi(af_n, af) \to 0.$$

(iii) Suppose $a, a_n \in C$ and $a_n \to a$, then for each $f \in N_*$

$$\phi(a_n f, af) \to 0.$$

(iv) Suppose $f, g, f_n, g_n \in N_*$ and $\phi(f_n, f) \to 0, \phi(g_n, g) \to 0$, then

$$\phi(f_n g_n, fg) \to 0.$$

(v) N_* is complete with respect to the metric ϕ.

Proof. (i) is obvious and (ii) and (iii) are just special cases of (iv). Suppose $f_n, f, g_n, g \in N_*$ and that f_n and g_n converge to f and g respectively in the metric ϕ. Since

$$\phi(f_n g_n - fg) = (f_n - f)(g_n - g) + (fg_n - fg) + (gf_n - gf),$$

by the triangle inequality and (2.5)

$$\phi(f_n g_n, fg) \leq \phi(f_n, f) + \phi(g_n, g) + \phi(fg_n, fg) + \phi(gf_n, gf).$$

Therefore it suffices to prove that if f_n converges to f in N_*, $\phi(gf_n, gf) \to 0$ for all $g \in N_*$.

Fix $g \in N_*$ and let $a = \limsup_{n \to \infty} \phi(gf_n, gf)$. Then there exists a subsequence of $\{f_n\}$, which without loss of generality we denote by $\{f_n\}$, such that $\phi(gf_n, gf) \to a$. From the inequality

$$\int_B |\log(1 + |f_n^*|) - \log(1 + |f^*|)| \, d\mu \leq \int_B \log(1 + |f_n^* - f^*|) \, d\mu = \phi(f_n, f),$$

for all n. Since $\phi(f_n, f) \to 0$, it follows that $\phi(gf_n, gf) \to 0$ for all $g \in N_*$. Therefore N_* is complete with respect to the metric ϕ.

Conclusion.
it follows that there exists a subsequence $\{f^*_k\}$ of $\{f^*_n\}$ such that $f^*_k \to f^*$ a.e. on B. Therefore $\log(1 + |g^* f^*_n| - g^* f^*) \to 0$ a.e. on B. Furthermore, by (2.6)
\[0 \leq \log(1 + |g^* f^*_n|) \leq \log(1 + |f^*_n|) + \log(1 + |g^*|). \]

Since the terms in the right of the above inequality converge a.e. to $\log(1 + |g^*|)$ and the integrals also converge to the integral of $\log(1 + |g^*|)$, by Lemma 2,
\[a = \lim_{n \to \infty} \mathcal{C}(g f_n, g f) = \lim_{k \to \infty} \int_B \log(1 + |g^* f^*_n| - g^* f^*) \, d\mu \]
\[= \int_B \lim_{k \to \infty} \log(1 + |g^* f^*_n| - g^* f^*) \, d\mu = 0. \]
Consequently $\lim_{n \to \infty} \mathcal{C}(g f_n, g f) = 0$, which proves (iv).

(v). Suppose $\{f_n\}$ is a Cauchy sequence in N_*, i.e., $\mathcal{C}(f_n, f_m) \to 0$ as $n, m \to \infty$. By (2.7) $\{f_n(z)\}$ converges uniformly on every compact subset of D to a holomorphic function. Let $f(z) = \lim f_n(z)$, $z \in D$.

We first show that $f \in N_*$. By the inequality
\[\int \log(1 + |f^*_n|) \, d\mu \leq \mathcal{C}(f_n, f_m), \]
$\log(1 + |f^*_n|)$ is a Cauchy sequence in $L^1(B)$. Hence there exists $g^* \in L^1(B)$, $g^* \geq 0$ a.e., such that $\log(1 + |f^*_n|) \to g^*$ in $L^1(B)$. Therefore, by (1.6), (2.2), and the above,
\[\log^+ |f(z)| = \lim_{n \to \infty} \log^+ |f_n(z)| \leq \limsup_{n \to \infty} P_\varepsilon[\log^+ |f^*_n|] \]
\[\leq \liminf_{n \to \infty} P_\varepsilon[\log(1 + |f^*_n|)] = P_\varepsilon[g^*]. \]
Since $g^* \in L^1(B)$, by [3], Theorem 4, $f \in N_*$. It still remains to be shown that $\mathcal{C}(f_n, f) \to 0$. Let $\varepsilon > 0$ be arbitrary and choose an integer I such that $\mathcal{C}(f_n, f_m) < \varepsilon/2$ for all $n, m \geq I$. Consider the functions $\log(1 + |f_n(z) - f(z)|^2)$ and $\log(1 + |f_n(z) - f_m(z)|^2)$ which are plurisubharmonic on D. Since $f_m \to f$ uniformly on compact subsets of D, for all r, $0 < r < 1$,
\[\int_B \log(1 + |f_n(rt) - f(rt)|^2) \, d\mu = \lim_{m \to \infty} \int_B \log(1 + |f_n(rt) - f_m(rt)|^2) \, d\mu. \]
By Lemma 4 and (2.6),
\[\int_B \log(1 + |f_n(rt) - f_m(rt)|^2) \, d\mu \leq \int_B \log(1 + |f^*_n - f^*_m|^2) \, d\mu \leq 2 \mathcal{C}(f_n, f_m). \]
Therefore for $n \geq I$ and all $r \in (0, 1)$, \[\int_B \log(1 + |f_n(rt) - f(rt)|^2) \, d\mu \leq \varepsilon. \]
By Lemma 4, \[\int_B \log(1 + |f^*_n - f^*|^2) \, d\mu \leq \varepsilon. \]
Hence $\lim_{n \to \infty} \int_B \log(1 + |f^*_n - f^*|^2) \, d\mu = 0,$
and consequently one can choose a subsequence \(\{f_{n_k}^*\} \) of \(\{f_n^*\} \) such that \(f_{n_k}^* \to f^* \) a.e. on \(B \). By Fatou's lemma, for all \(n \geq I \),

\[
\varrho (f_n, f) = \int_B \log (1 + |f_n^* - f^*|) \, d\mu \leq \lim_{k \to \infty} \int_B \log (1 + |f_n^* - f_{n_k}^*|) \, d\mu \leq \varepsilon /2.
\]

Since \(\varepsilon > 0 \) was arbitrary, \(\lim_{n \to \infty} \varrho (f_n, f) = 0 \), which proves the result.

Theorem 2. Let \(f \in N_\ast (D) \). Then

\[
\varrho (f, 0) = \lim_{r \to 1} \int_B \log (1 + |f_r(t)|) \, d\mu (t),
\]

and

\[
\lim_{r \to 1} \varrho (f_r, f) = 0,
\]

where \(f_r(z) = f(rz), \ z \in D \).

Proof. By Lemma 1 (i), \(f_r \to f^* \) a.e. on \(B \) and by (1.7) \(\int_B \log^+ |f_r| \, d\mu \to \int_B \log^+ |f^*| \, d\mu \) as \(r \to 1 \). By (2.2), \(\log (1 + |f_r|) \leq \ln 2 + \ln^+ |f_r| \). Thus by Lemma 2,

\[
\varrho (f, 0) = \int_B \log (1 + |f^*|) \, d\mu = \lim_{r \to 1} \int_B \log (1 + |f_r|) \, d\mu,
\]

which proves (2.14). The same technique applied to \(\log (1 + |f_r - f^*|) \) gives (2.15).

3. Outer functions in \(N_\ast \). As in [12], p. 72, a function \(f \in N_\ast (D) \), \(f \neq 0 \), is outer if

\[
\log |f(0)| = \int_B \log |f^*| \, d\mu,
\]

where \(f^* \) is given by (1.5).

Theorem 3. Let \(f \in N_\ast (D) \), \(f \neq 0 \). Then \(f \) is an outer function on \(D \) if and only if

\[
\log |f(z)| = P_* [\log |f^*|], \quad z \in D,
\]

where \(P_* [\] \) is given by (1.3).

Proof. Assume \(f \in N_\ast, f \neq 0 \). If \(f \) satisfies (3.2) it is clear that \(f \) is outer.

Suppose \(f \) is outer. Set \(H(z) = \log |f(z)| - P_* [\log |f^*|] \). By (1.6) \(H(z) \leq 0 \) for all \(z \in D \) and by (3.1) \(H(0) = 0 \). The function \(H \) is "strongly" subharmonic in the sense that

\[
H(g \cdot 0) \leq \int_K H(gk \cdot 0) \, dk
\]
for all \(g, q \in G \), where \(dk \) denotes the normalized Haar measure on the compact group \(K \). Here \(g \cdot 0 \) denotes the action of \(G \) on \(D \). Inequality (3.3) follows since \(\log |f(z)| \) satisfies (3.3) [9] and, for every integrable function \(g^* \) on \(B \), equality in (3.3) holds for \(P_z[g^*] \) [8]. It is well known that every upper semicontinuous function on \(D \) satisfying (3.3) satisfies the maximum principle on \(D \). Therefore \(H(z) = 0 \) for all \(z \in D \), which proves (3.2).

Theorem 4. If \(f \in N_* (D) \) is outer, then

\[
\lim_{r \to 1} \int_B \left| \log |f| - \log |f^*| \right| d\mu = 0.
\]

Conversely, if \(f \in N_* (D), f(z) \neq 0 \) for all \(z \in D \), satisfies (3.4), then \(f \) is outer.

Proof. Suppose \(f \in N_* \) is outer. Then, since \(\log |f^*| \in L^1 (B) \), by (3.2) \(f(z) \neq 0 \) for all \(z \in D \). Let \(d\nu = \log |f^*| \, d\mu + d\sigma_f \), \(\sigma_f \leq 0 \), be the boundary measure of \(\log |f| \) given by Lemma 1. By (1.4) and (3.1) it follows that \(\sigma_f = 0 \). By the corollary to Theorem 1 in [14], for \(f \in N_* \), \(f \neq 0 \),

\[
\limsup_{r \to 1} \int_B \left| \log |f| - \log |f^*| \right| d\mu \leq \int_B d|\sigma_f|.
\]

(3.4) now follows from (3.5).

Conversely, suppose \(f \in N_* \), \(f(z) \neq 0 \) for all \(z \in D \), satisfies (3.4). Since \(D \) is simply connected and \(f(z) \neq 0 \) for all \(z \in D \), \(\log |f(z)| \) is pluriharmonic on \(D \). By [15], Theorem 2 (iii), \(\log |f(z)| = P_z[\log |f^*|] \). Therefore \(f \) is outer.

Let \(U = \{ z \in C : |z| < 1 \} \). For a function \(f \) defined on \(D \) and \(t \in B \), set

\[
f_t (z) = f(zt), \quad z \in U.
\]

If \(f \) is holomorphic (plurisubharmonic) in \(D \), \(f_t \) is holomorphic (subharmonic) in \(U \). For a plurisubharmonic function \(f \) defined on \(D \) and \(t \in B \) let

\[
M(f; t, r) = \frac{1}{2\pi} \int_0^{2\pi} f_t (re^{i\theta}) d\theta, \quad 0 < r < 1.
\]

Since \(f_t \) is subharmonic in \(U \), \(M(f; t, r) \) is a non-decreasing function of \(r \) on \((0, 1)\). Let

\[
M(f; t) = \lim_{r \to 1} M(f; t, r).
\]

Theorem 5. If \(f \in N(D) \) \((N_*(D)) \), then \(f_t \in N(U) \) \((N_*(U)) \), for almost all \(t \in B \).
Proof. Suppose \(f \in N(D) \), \(f \not= 0 \). Consider \(M(\log^+ |f|; t, r) \). Since \(d\mu(t') = d\mu(t) \) under the change of variable \(t' = te^{i\theta} \), by Fubini's theorem

\[
\int_B M(\log^+ |f|; t, r)d\mu(t) = \int_B \frac{1}{2\pi} \int_0^{2\pi} \log^+ |f(re^{i\theta}t)|d\theta d\mu(t) = \int_B \log^+ |f_r|d\mu,
\]

and by the Monotone convergence theorem,

\[
\int_B M(\log^+ |f|; t) d\mu(t) = \lim_{r \to 1} \int_B \log^+ |f_r| d\mu < \infty.
\]

Consequently \(M(\log^+ |f|; t) < \infty \) for almost all \(t \in B \) and therefore \(f_t \in N(U) \) for almost all \(t \in B \).

Suppose \(f \in N_*(D) \). By (1.7) and (3.10)

\[
\int_B M(\log^+ |f|; t) d\mu(t) = \int_B \frac{1}{2\pi} \int_0^{2\pi} \log^+ |f^*(e^{i\theta}t)| d\theta d\mu(t).
\]

However, since \(f_t \in N(U) \) for almost all \(t \in B \), by Fatou's lemma,

\[
\frac{1}{2\pi} \int_0^{2\pi} \log^+ |f^*(e^{i\theta}t)| d\theta \leq \lim_{r \to 1} \frac{1}{2\pi} \int_0^{2\pi} \log^+ |f_t(re^{i\theta})| d\theta = M(\log^+ |f|; t).
\]

Combining (3.11) and (3.12),

\[
\lim_{r \to 1} \frac{1}{2\pi} \int_0^{2\pi} \log^+ |f_t(re^{i\theta})| d\theta = \frac{1}{2\pi} \int_0^{2\pi} \log^+ |f^*(e^{i\theta})| d\theta
\]

for almost all \(t \in B \). Therefore by [18], Theorem 7.5.3, \(f_t \in N_*(U) \) (\(N' \) in the notation of [18]) for almost all \(t \in B \), which proves the assertion.

Theorem 6. Let \(f \in N_*(D) \), \(f \not= 0 \), and let \(\nu_f \) be the boundary measure of \(\log |f| \). Then the following are equivalent:

(i) \(d\nu_f = \log |f^*|d\mu \), i.e., \(\sigma_f = 0 \).

(ii) For almost all \(t \in B \), the least harmonic majorant \(U[f_t] \) of \(\log |f_t| \) in \(U \) is given by

\[
U[f_t](z) = \frac{1}{2\pi} \int_0^{2\pi} P(z, e^{i\theta}) \log |f^*_t(e^{i\theta})| d\theta, \quad z \in U,
\]

where here \(P(z, e^{i\theta}) = \frac{1 - |z|^2}{|e^{i\theta} - z|^2} \) is the Poisson kernel for the unit disc.
Proof. Suppose $d\nu_f = \log |f^*|d\mu$. Hence by (1.8), $\lim_{r \to 1} \int_{B} \log |f^*|d\mu = \int_{B} \log |f^*|d\mu$. As in (3.9)--(3.11),

$$\lim_{r \to 1} \int_{B} M(\log |f^*|; t, r)d\mu(t) = \int_{B} \frac{1}{2\pi} \int_{0}^{2\pi} \log |f^*_t(e^{i\theta})|d\theta d\mu(t).$$

Since $f_t \in N_\ast(U)$ almost all $t \in B$, by (1.6)

$$\log |f_t(z)| \leq \frac{1}{2\pi} \int_{0}^{2\pi} P(z, e^{i\theta}) \log |f^*_t(e^{i\theta})|d\theta, \quad z \in U.$$

Therefore,

$$\lim_{r \to 1} M(\log |f^*|; t, r) \leq \frac{1}{2\pi} \int_{0}^{2\pi} \log |f^*_t(e^{i\theta})|d\theta \quad \text{for almost all } t \in B.$$

Hence by (3.15),

$$\lim_{r \to 1} \frac{1}{2\pi} \int_{0}^{2\pi} \log |f_t(re^{i\theta})|d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \log |f^*_t(e^{i\theta})|d\theta \quad \text{a.e.}$$

Consequently if $t \in B$ is such that (3.16) is satisfied, then by Lemma 1 (ii) and (1.8), the singular part of the boundary measure ν_t of $\log |f_t|$ is zero. For the unit disc the harmonic function

$$U[f_t](z) = \frac{1}{2\pi} \int_{0}^{2\pi} P(z, e^{i\theta}) \log |f^*_t(e^{i\theta})|d\theta, \quad z \in U$$

is the least harmonic majorant of $\log |f_t(z)|$ [12], which proves (ii).

Conversely, if (ii) holds, then

$$\lim_{r \to 1} M(\log |f^*|; t, r) = \frac{1}{2\pi} \int_{0}^{2\pi} \log |f^*_t(e^{i\theta})|d\theta \quad \text{for almost all } t \in B.$$

By (3.9) and (3.10), with \log^+ replaced by \log,

$$\lim_{r \to 1} \int_{B} \log |f_t|d\mu = \int_{B} \log |f^*|d\mu.$$

By (1.8) it now follows that $\sigma_f = 0$, proving (i).

Corollary. Let $f \in N_\ast(D)$. Then f is outer if and only if f_t is outer for almost all $t \in B$, where f_t is given by (3.6).

Remark. For the special case of the polydisc, many of the results of this section were proved by W. Rudin in [12].
4. Invertible elements in N_*. In this section we apply the results of the previous section to the invertible elements in N_*. Let $I_* = I_*(D)$ denote the functions $f \in N_*(D)$ such that $\frac{1}{f} \in N_*(D)$. Clearly, in order that $\frac{1}{f} \in N_*(D)$, the function $f(z)$ has to be non-zero for all $z \in D$.

Theorem 7. For $f \in N_*(D)$, $f \in I_*(D)$ if and only if f is an outer function.

Proof. Suppose $f \in N_*$ is invertible. Since $f(z) \neq 0$ for all $z \in D$, $\log |f(z)|$ is pluriharmonic on D. Let $\nu_f = \log |f^*|d\mu + d\sigma_f$, $\sigma_f \leq 0$ be the boundary measure of $\log |f|$. Since $f \in N_*$, it is easily shown that

$$\sup_{\theta < r < 1} \int_B |\log |f_r||d\mu < \infty.$$

Therefore, by [15], Theorem 2 (ii),

$$\log |f(z)| = P_z[\log |f^*|] + P_z[d\sigma_f], \quad z \in D. \quad (4.1)$$

However, since $\frac{1}{f} \in N_*$ and $\sup_{\theta < r < 1} \int_B \log |\frac{1}{f_r}|d\mu < \infty$, by Lemma 1 and [15], Theorem 2 (ii), we also have

$$-\log |f(z)| = -P_z[\log |f^*|] + P_z[d\sigma_{1/f}], \quad z \in D, \quad (4.2)$$

where $\sigma_{1/f}$ is the singular part of $\nu_{1/f}$, the boundary measure of $\log |1/f|$. Therefore, by (4.1) and (4.2), $-P_z[d\sigma_{1/f}] = P_z[d\sigma_f]$ for all $z \in D$, from which it follows that $\sigma_{1/f} = -\sigma_f$. But $\sigma_f \leq 0$ and $\sigma_{1/f} \leq 0$ implies $\sigma_f = 0$. Therefore, by (4.1) f satisfies (3.2) and hence is outer.

Conversely, if $f \in N_*$ is outer, by (3.2) it is clear that $\frac{1}{f} \in N_*$.

Theorem 8. Suppose $f_n, f \in I_*$ and $\varepsilon(f_n, f) \to 0$ as $n \to \infty$. Then

$$\lim_{n \to \infty} \varepsilon \left(\frac{1}{f_n}, \frac{1}{f} \right) = 0. \quad (4.3)$$

Consequently, the mapping $\tau : I_* \to I_*$ given by

$$\tau(f) = 1/f \quad (4.4)$$

is continuous and I_* is a topological group under multiplication.

Proof. We first show that $\varepsilon \left(\frac{1}{f_n}, 0 \right) \to \varepsilon \left(\frac{1}{f}, 0 \right)$. For any $f \in I_*$, by Theorem 7 and (3.1)

$$\varepsilon \left(\frac{1}{f}, 0 \right) = \varepsilon(f, 0) - \log |f(0)|. \quad (4.5)$$

Since $\varepsilon(f_n, f) \to 0$, by the inequality $|\varepsilon(f, 0) - \varepsilon(f_n, 0)| \leq \varepsilon(f_n, f)$, $\varepsilon(f_n, 0) \to \varepsilon(f, 0)$, and by Lemma 3, $f_n(x) \to f(x)$ for all $x \in D$. Therefore,
by (4.3)

\[(4.6) \quad \lim_{n \to \infty} \mathcal{E} \left(\frac{1}{f_n}, 0 \right) = \mathcal{E} \left(\frac{1}{f}, 0 \right). \]

Let \(\alpha = \lim_{n \to \infty} \mathcal{E} \left(\frac{1}{f_n}, \frac{1}{f} \right) \). Since we can choose a subsequence \(\{f_{n_k}\} \)

such that \(\mathcal{E} \left(\frac{1}{f_{n_k}}, \frac{1}{f} \right) \to \alpha \) as \(k \to \infty \), we will assume without loss of generality

that \(\mathcal{E} \left(\frac{1}{f_n}, \frac{1}{f} \right) \to \alpha. \)

Since \(\lim_{n \to \infty} \int \log(1 + |f_n^* - f^*|) d\mu = 0 \), there exists a subsequence \(\{f_{n_k}\} \)

of \(\{f_n\} \) such that \(f_{n_k}^* \to f^* \) a.e. Therefore, since

\[\mathcal{E} \left(\frac{1}{f_{n_k}}, \frac{1}{f} \right) = \int \log \left(1 + \frac{1}{f_{n_k}^*} - \frac{1}{f^*}\right) d\mu \]

\[\leq \int \left[\log \left(1 + \frac{1}{f_{n_k}^*}\right) + \log \left(1 + \frac{1}{f^*}\right) \right] d\mu, \]

by (4.6) and Lemma 2,

\[\lim_{k \to \infty} \mathcal{E} \left(\frac{1}{f_{n_k}}, \frac{1}{f} \right) = \int \lim_{k \to \infty} \log \left(1 + \frac{1}{f_{n_k}^*} - \frac{1}{f^*}\right) d\mu = 0. \]

Therefore \(\alpha = 0 \) and \(\lim_{n \to \infty} \mathcal{E} \left(\frac{1}{f_n}, \frac{1}{f} \right) = 0. \)

Theorem 9. Suppose \(f_n \in I_*, \ n = 1, 2, \ldots \) and that \(f_n \to f \in N_* \). If \(f \not\equiv 0 \), then \(f(z) \neq 0 \) for all \(z \in D \). Furthermore, \(f \in I_* \) if and only if

\[(4.7) \quad \int_B \log |f^*| d\mu \leq \liminf_{n \to \infty} \int_B \log |f_n^*| d\mu, \]

where \(f_n^* \), \(f^* \) are given by (1.5).

Proof. Suppose \(f_n \to f \), \(f \in I_* \), \(f \in N_* \), and \(f \) is not identically zero.

By Lemma 3, \(f_n \to f \) uniformly on compact subsets of \(D \). Since \(f_n(z) \not\equiv 0 \)

for all \(z \in D \) and all \(n \), and \(f \) is not identically zero, by [2], p. 274, \(f(z) \neq 0 \)

for all \(z \in D \).

Clearly, if \(f \in I_* \), by (3.1) and Theorem 7, \(\int_B \log |f^*| d\mu = \lim_{n \to \infty} \int_B \log |f_n^*| d\mu, \)

which proves (4.7).

Conversely, suppose (4.7) is valid. Then by (1.6),

\[\log |f(0)| \leq \int_B \log |f^*| d\mu \leq \liminf_{n \to \infty} \int_B \log |f_n^*| d\mu. \]
However, since $f_n \in I_*$ for all n, f_n is outer and by (3.1),
\[
\liminf_{n \to \infty} \int_B |f_n^*| \, d\mu = \lim_{n \to \infty} |f_n(0)| = |f(0)|.
\]

Therefore, f satisfies (3.1) and hence by Theorem 7 is invertible.

Remark. Theorem 9 also shows that the closure of I_* in N_*, \bar{I}_*, is given by
\[
\bar{I}_* = \{ f \in N_* | f(z) \neq 0 \text{ for all } z \in D \} \cup \{0\}.
\]

Since if $f_n \in I_*$, $f_n \to f \in N_*$, then by Theorem 9, $f = 0$ or $f(z) \neq 0$ for all $z \in D$. Conversely, if $f(z) \neq 0$ for all $z \in D$ and $f \in N_*$, then for each r, $0 < r < 1$, $f \in I_*$ and by (2.15), $f \to f$ in N_*.

5. Representation of continuous linear functionals on N_*. Let γ be a continuous linear functional on N_*, i.e., $\gamma \in (N_*)^*$. Since N_* is metrizable, γ is continuous if and only if γ is bounded, i.e., $\gamma(E)$ is bounded for every bounded subset E of N_* [13], Theorem 1.32.

As in Section 1, let $\Phi = \{ \varphi_{kr}(z) \}$, $k = 1, 2, \ldots$, $r = 1, 2, \ldots$, m_k be the complete orthonormal system of homogeneous polynomials. Using the inequality, $\log(1 + x) \leq x$, $x \geq 0$, and the orthonormality of Φ, one can easily show that for any scalar $a \in C$,
\[
\varphi(\alpha \varphi, 0) \leq |a|, \quad \varphi \in \Phi,
\]
from which it follows by [13], Theorem 1.30, that Φ is a bounded subset of N_*. Since the result is not needed, we omit the details.

For f holomorphic on D, $0 < r < 1$, set
\[
(f_*, \varphi_{kr}) = \int_B f_*(t) \overline{\varphi_{kr}(t)} \, d\mu(t).
\]

We state the following result, proved in [5], as a lemma.

Lemma 5. Any holomorphic function f on D has a Fourier series expansion
\[
f(z) = \sum_{k=0}^\infty \sum_{r=1}^{m_k} a_{kr}(f) \varphi_{kr}(z), \quad a_{kr}(f) = \lim_{r \to 1} (f_*, \varphi_{kr}),
\]
which converges uniformly on compact subsets of D.

Theorem 10. Let γ be a continuous linear functional on $N_*(D)$. Then there exists a unique holomorphic function g on D such that
\[
\gamma(f) = \lim_{r \to 1} \int_B f(r \varphi^{-1} t) g(\varphi t) \, d\mu(t), \quad 0 < r < q < 1,
\]
for all $f \in N_*$. Conversely, given any g holomorphic on D for which $\lim_{r \to 1} \int_B f(r \varphi^{-1} t) g(\varphi t) \, d\mu(t)$ exists for all $f \in N_*$, then (5.4) defines a continuous linear functional on N_*.
Proof. Given \(\gamma \in (N_\ast)^\ast \), let \(b_{kr} = \gamma(\varphi_{kr}) \), \(\varphi_{kr} \in \Phi \). \(\{b_{kr}\} \) is a bounded subset of \(C \) since \(\Phi \) is bounded. Let \(f \in N_\ast \) be arbitrary and for each positive integer \(n \) set
\[
F^n(z) = \sum_{k=0}^{n} \sum_{r=1}^{m_k} a_{kr}(f) \varphi_{kr}(z),
\]
where \(a_{kr}(f) \) is given by (5.3). Then \(F^n(z) \to f(z) \) for all \(z \in D \) and for \(0 < r < 1 \), \(F^n_r(z) \to f_r(z) \) uniformly on \(\overline{D} \). Consequently,
\[
\lim_{n \to \infty} \varrho(F^n_r, f_r) = \lim_{n \to \infty} \int_{B} \log (1 + |F^n(rt) - f(rt)|) d\mu(t) = 0.
\]

Therefore, by the continuity of \(\gamma \) and (5.6)
\[
(5.7) \quad \gamma(f_r) = \lim_{n \to \infty} \gamma(F^n_r) = \lim_{n \to \infty} \sum_{k=0}^{n} \sum_{r=1}^{m_k} a_{kr}(f) b_{kr} r^k = \sum_{k=0}^{\infty} \sum_{r=1}^{m_k} a_{kr}(f) b_{kr} r^k.
\]

In (5.7) we used the homogeneity of \(\varphi_{kr} \) to obtain \(\varphi_{kr}(rz) = r^k \varphi_{kr}(z) \).

By (2.15), \(\varrho(f_r, f) \to 0 \) as \(r \to 1 \). Therefore
\[
(5.8) \quad \gamma(f) = \lim_{r \to 1} \gamma(f_r) = \lim_{r \to 1} \sum_{k=0}^{\infty} \sum_{r=1}^{m_k} a_{kr}(f) b_{kr} r^k.
\]

For each positive integer \(n \), let
\[
(5.9) \quad S^n_w(z, \overline{w}) = \sum_{k=0}^{n} \sum_{r=1}^{m_k} \varphi_{kr}(z) \varphi_{kr}(\overline{w})
\]
and
\[
(5.10) \quad g_n(z) = \sum_{k=0}^{n} \sum_{r=1}^{m_k} b_{kr} \varphi_{kr}(z).
\]

By (1.2),
\[
(5.11) \quad \lim_{n \to \infty} S^n_w(z, \overline{w}) = S(z, \overline{w}) = S_w(z),
\]
where the convergence is uniform on compact subsets of \(\overline{D} \times D \). Consequently, for fixed \(w \in D \), \(S_w \) (given by (5.11)) is holomorphic in \(D \) and continuous on \(\overline{D} \), hence in \(N_\ast \). Furthermore, given any compact subset \(C \) of \(D \) and \(\delta > 0 \), there exists an integer \(I = I(\delta, C) \) such that
\[
(5.12) \quad \varrho(S^n_{w_1}, S_{w_2}) = \int_{B} \log (1 + |S^n_w(t) - S_w(t)|) d\mu(t) < \delta
\]
for all \(n \geq I \) and all \(w \in C \). (5.12) follows since \(S^n(z, w) \to S(z, w) \) uniformly for \((z, w) \in \overline{D} \times C \).

Let \(\varepsilon > 0 \) be arbitrary and let \(C \) be an arbitrary compact subset of \(D \). By continuity of \(\gamma \), there exists a \(\delta > 0 \) such that \(|\gamma(f)| < \delta \) for all
$f \in N_*$ with $\varrho(f, 0) < \delta$. By (5.12), there exists an integer I such that $e(S^n_w, S_w) < \delta$ for all $w \in C$ and all $n \geq I$. Therefore

\begin{equation}
|\varrho(S^n_w) - \varrho(S_w)| < \varepsilon
\end{equation}

for all $n \geq I$ and all $w \in C$. However, by (5.9) and (5.10), $\varrho(S^n_w) = g_n(w)$. Therefore g_n converges uniformly on compact subsets to a holomorphic function g on D. Let

\begin{equation}
g(z) = \lim_{n \to \infty} g_n(z) = \sum_{k=0}^{m_k} \sum_{r=1}^{b_{kr}} \varepsilon_{k, r}\varphi_{k, r}(z), \quad z \in D.
\end{equation}

Consider $\int_{B(r^0 - t)} f(\varrho(t) \varphi(t)) d\mu(t), 0 < r < \varrho < 1$. A routine computation, using the orthonormality of $\{\varphi_{k, r}\}$ and the uniform convergence of the series expansions of f and g ((5.3) and (5.14) respectively) on compact subsets of D, gives

\begin{equation}
\int_{B} f(\varrho^{-1} - t) g(\varrho(t)) d\mu(t) = \sum_{k=0}^{m_k} \sum_{r=1}^{a_{kr}} b_{kr} r^k.
\end{equation}

Combining (5.7) with (5.15) gives (5.4). Equation (5.15) also shows that (5.4) is independent of ϱ, $0 < r < \varrho < 1$. Since

\begin{equation}
\int_{B} g(\varrho(t)) \varphi_{k, r}(t) d\mu(t) = b_{kr} \quad \text{for all } k = 0, 1, 2, \ldots, \quad r = 1, \ldots, m_k,
\end{equation}

g is unique.

Conversely, suppose there exists a holomorphic function g on D such that

\begin{equation}
\lim_{r \to 1} \int_{B(r, 0)} f(\varrho^{-1} - t) g(\varrho(t)) d\mu(t), \quad 0 < r < \varrho < 1,
\end{equation}

exists for all $f \in N_*$. For $0 < r < \varrho < 1$, set

\begin{equation}
\gamma_r(f) = \int_{B} f(\varrho^{-1} - t) g(\varrho(t)) d\mu(t).
\end{equation}

For each $r \in (0, 1)$ and ϱ, $r < \varrho < 1$, γ_r is continuous. Since, if $f_n \to f$ in N_*, $f_n \to f$ uniformly on compact subsets of D and hence $\gamma_r(f_n) \to \gamma_r(f)$. By (5.16), $\lim_{r \to 1} \gamma_r(f)$ exists for every $f \in N_*$, and by [13], Theorem 2.8,

$$
\gamma(f) = \lim_{r \to 1} \gamma_r(f)
$$

defines a continuous linear functional on N_*, which completes the proof.
References

UNIVERSITY OF SOUTH CAROLINA
COLUMBIA

Reçu par la Rédaction le 20.5.1974