OPERATORS ON SOME FUNCTION SPACES

BY

RYOTARO SATO (SAKADO, JAPAN)

1. Introduction. The Gleason-Kahane-Żelazko theorem [2], [4], [10] states that if \(\tau \) is a linear functional on a complex Banach algebra \(A \) such that

\[
\tau(x) \in \sigma(x)
\]

for every \(x \in A \), where \(\sigma(x) \) denotes the spectrum of \(x \) in \(A \), then \(\tau \) is multiplicative on \(A \), i.e.,

\[
\tau(xy) = \tau(x) \tau(y) \quad (x, y \in A).
\]

(See also Żelazko [11] and Rudin [7], p. 233.)

In [9], applying this interesting theorem, we have observed that if \(X \) is a compact Hausdorff space and \(T \) is a linear operator from \(C(X) \) to \(C(X) \), where \(C(X) \) denotes the space of all complex-valued continuous functions on \(X \), such that

\[
|Tf| > 0 \quad \text{on } X
\]

for every \(f \in C(X) \) with \(|f| > 0 \) on \(X \), then \(T \) has the form

\[
Tf(x) = r(x) \cdot f(\varphi(x)) \quad (f \in C(X), x \in X),
\]

where \(r \in C(X) \) and \(\varphi \) is a continuous mapping from \(X \) to \(X \).

In the present paper we intend to apply the Gleason-Kahane-Żelazko theorem to obtain similar results for linear operators on \(H_\infty(D) \), the space of all bounded analytic functions on the open unit disc \(D = \{z : |z| < 1\} \) in the complex plane, and on \(A(C) \), the space of all complex-valued continuous functions on the unit circle \(C = \{z : |z| = 1\} \) in the complex plane that have absolutely convergent Fourier series.

2. Operators on \(H_\infty(D) \). We recall that \(H_\infty(D) \) is a complex Banach space with the norm

\[
\|f\|_\infty = \sup_{z \in D} |f(z)| \quad (f \in H_\infty(D)),
\]
and that it is also a Banach algebra under the usual pointwise multiplication. If \(T \) is a linear operator from \(H_\infty(D) \) to \(H_\infty(D) \), we shall write

\[
Z(T) = \{ z \in D : Tf(z) = 0 \text{ for some invertible } f \in H_\infty(D) \}.
\]

Here the continuity of \(T \) is not assumed. Our first result is the following

Theorem 1. Let \(T \) be a linear operator from \(H_\infty(D) \) to \(H_\infty(D) \). Then the following two statements (I) and (II) are equivalent:

(I) \(Z(T) \) has no limit point in \(D \) and \(T \) is one-to-one (i.e., \(Tf = 0 \) implies \(f = 0 \)).

(II) \(T \) has the form

\[
Tf(z) = h(z) \cdot f(a(z)) \quad (f \in H_\infty(D), z \in D),
\]

where \(h, a \in H_\infty(D), h \) is not identically zero on \(D \), \(a \) is not constant on \(D \), and \(\|a\|_\infty \leq 1 \).

Proof. (I) implies (II). If we let \(\Omega = D \cap Z(T)^c \), then \(\Omega \) is open and connected. For \(z \in \Omega \) and \(f \in H_\infty(D) \), define

\[
\tau_z(f) = Tf(z)/T1(z).
\]

\(\tau_z \) is a linear functional on \(H_\infty(D) \) satisfying

\[
\tau_z(1) = 1 \quad \text{and} \quad \tau_z(f) \neq 0
\]

for every invertible \(f \in H_\infty(D) \). Therefore we may apply the Gleason-Kahane-Żelazko theorem to infer that \(\tau_z \) is multiplicative on \(H_\infty(D) \).

Let the letter \(j \) denote the identity function: \(j(z) = z \), and define a function \(a \) on \(\Omega \) by the relation

\[
a(z) = \tau_z(j) \quad (z \in \Omega).
\]

It follows that \(|a(z)| \leq \|\tau_z\| \cdot \|j\|_\infty = 1 \) (\(z \in \Omega \)), and \(a \) is an analytic function on \(\Omega \) by (5). Thus \(a \) may and will be regarded as an analytic function on \(D \), because \(Z(T) \) has no limit point in \(D \). We now prove that \(|a(z)| < 1 \) for every \(z \in D \). In fact, if \(|a(z)| = 1 \) for some \(z \in D \), then the maximum modulus principle implies that \(a = c \) on \(D \), where \(c \) is a constant of absolute value 1, and so it follows from (5) that \(Tf(z) = cT1(z) \) (\(z \in D \)), which is impossible, since \(T \) is one-to-one. Hence it follows (cf. Hoffman \[3\], p. 160) that if \(z \in \Omega \) and \(f \in H_\infty(D) \), then \(\tau_z(f) = f(a(z)) \). Thus

\[
Tf(z) = h(z) \cdot f(a(z)) \quad (f \in H_\infty(D), z \in D),
\]

where we let \(h = T1 \). Since \(T \) is one-to-one, \(a \) cannot be constant on \(D \). It is clear that \(a \in H_\infty(D) \).

(II) implies (I). This is immediate from the open mapping theorem and the unicity theorem for analytic functions defined on an open and connected set in the complex plane.
Corollary 2 (cf. Nagasawa [5] and deLeew-Rudin-Wermer [1]). Let \(T \) be a linear operator from \(H_\infty(D) \) to \(H_\infty(D) \). Assume that \(T \) is one-to-one and onto, and that \(|Tf| > 0 \) on \(D \) and \(|T^{-1}f| > 0 \) on \(D \) for every invertible \(f \in H_\infty(D) \). If \(\|T1\|_\infty = 1 \) and \(\|f\|_\infty \leq \|Tf\|_\infty \) for every \(f \in H_\infty(D) \), or if \(T1 = c \) on \(D \), where \(c \) is a constant of absolute value 1, then \(T \) is an isometry.

Proof. By Theorem 1, \(T \) has the form

\[
Tf(z) = h(z) \cdot f(a(z)) \quad (f \in H_\infty(D), z \in D),
\]

where \(h \in H_\infty(D) \) is invertible and \(a \) is a conformal mapping from \(D \) onto \(D \).

If \(\|T1\|_\infty = 1 \) and \(\|f\|_\infty \leq \|Tf\|_\infty \) for every \(f \in H_\infty(D) \), then it follows that

\[
\|1/T1\|_\infty = \|1/h\|_\infty = \|T^{-1}\| \leq 1,
\]

and so \(|T1| = 1 \) on \(D \), thus \(T1 = c \) on \(D \) for some constant \(c \) of absolute value 1. Therefore \(T \) has the form \(Tf(z) = c \cdot f(a(z)) \), and this completes the proof.

3. Operators on \(A(C) \). We recall that \(A(C) \) is a complex Banach space with the norm

\[
\|f\| = \sum_{n=-\infty}^{\infty} |\hat{f}(n)| \quad (f \in A(C)),
\]

where \(\hat{f} \) is defined by

\[
\hat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{i\theta}) e^{-in\theta} \, d\theta.
\]

It is also a Banach algebra under the usual pointwise multiplication.

Theorem 3. Let \(T \) be a linear operator from \(A(C) \) to \(A(C) \). Assume that \(f \in A(C) \) and \(|f| > 0 \) on \(C \) imply \(|Tf| > 0 \) on \(C \). Then \(T \) has the form

\[
Tf(z) = h(z) \cdot f(cz^n) \quad (f \in A(C), z \in C),
\]

where \(h \in A(C) \) is invertible, \(c \) is a constant of absolute value 1, and \(n \) is an integer.

Proof. Write \(h = T1 \). Since \(|h| > 0 \) on \(C \), \(1/h \in A(C) \) by the inversion theorem of Wiener (see, for example, Rudin [8], p. 399). For \(z \in C \) and \(f \in A(C) \), let us define

\[
\tau_z(f) = Tf(z)/h(z).
\]

Then \(\tau_z \) is a linear functional on \(A(C) \) satisfying \(\tau_z(1) = 1 \) and \(\tau_z(f) \neq 0 \) for every invertible \(f \in A(C) \). Hence \(\tau_z \) is multiplicative on \(A(C) \) by the Gleason-Kahane-Żelazko theorem, and thus there exists a complex number \(\alpha(z) \in C \) satisfying \(\tau_z(f) = f(\alpha(z)) \) for every \(f \in A(C) \). Since

\[
f(\alpha(z)) = Tf(z)/h(z) \in A(C)
\]
for every \(f \in A(C) \), it follows from the Leibenson-Kahane theorem (cf. Rudin \[6\], p. 94) that \(a \) has the form

\[
a(z) = c \cdot z^n \quad (z \in C),
\]

where \(|c| = 1\) and \(n \) is an integer, and the proof is complete.

REFERENCES

DEPARTMENT OF MATHEMATICS, JOSAI UNIVERSITY
SAKADO, SAITAMA, JAPAN

Reçu par la Rédaction le 20. 8. 1975